Roles of PD-L1 in human adipose-derived mesenchymal stem cells under inflammatory microenvironment

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of cellular biochemistry Pub Date : 2024-03-07 DOI:10.1002/jcb.30544
Jinqiu Sun, Hannah Zhong, Bo Kang, Trenton Lum, Dongxue Liu, Shengxian Liang, Jijun Hao, Rui Guo
{"title":"Roles of PD-L1 in human adipose-derived mesenchymal stem cells under inflammatory microenvironment","authors":"Jinqiu Sun,&nbsp;Hannah Zhong,&nbsp;Bo Kang,&nbsp;Trenton Lum,&nbsp;Dongxue Liu,&nbsp;Shengxian Liang,&nbsp;Jijun Hao,&nbsp;Rui Guo","doi":"10.1002/jcb.30544","DOIUrl":null,"url":null,"abstract":"<p>Mesenchymal stem cells (MSCs) display unique homing and immunosuppression features which make them promising candidates for cell therapy in inflammatory disorders. It is known that C-X-C chemokine receptor type 4 (CXCR4, also known as CD184) is a critical receptor implicated in MSCs migration, and the protein programmed death ligand-1 (PD-L1) is involved in MSC's immunosuppression. However, it remains unclear how the molecular mechanisms regulate PD-L1 expression for migration and immunosuppression of MSCs under the inflammatory microenvironment. In this article, we used the human adipose-derived mesenchymal stem cells (hADMSCs) treated with lipopolysaccharide (LPS) as an in vitro inflammatory model to explore the roles of PD-L1 on the migration and immunosuppression of MSC. Our results demonstrate that in hADMSCs, LPS significantly increased PD-L1 expression, which mediated the migration of the LPS-treated hADMSCs via CXCR4. In addition, we found that the increased PD-L1 expression in the LPS-treated hADMSCs inhibited B cell proliferation and immunoglobulin G secretion through nuclear factor-κB. Our study suggests that the PD-L1 plays critical roles in the homing and immunosuppression of MSCs which are a promising cell therapy to treat inflammatory diseases.</p>","PeriodicalId":15219,"journal":{"name":"Journal of cellular biochemistry","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cellular biochemistry","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcb.30544","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mesenchymal stem cells (MSCs) display unique homing and immunosuppression features which make them promising candidates for cell therapy in inflammatory disorders. It is known that C-X-C chemokine receptor type 4 (CXCR4, also known as CD184) is a critical receptor implicated in MSCs migration, and the protein programmed death ligand-1 (PD-L1) is involved in MSC's immunosuppression. However, it remains unclear how the molecular mechanisms regulate PD-L1 expression for migration and immunosuppression of MSCs under the inflammatory microenvironment. In this article, we used the human adipose-derived mesenchymal stem cells (hADMSCs) treated with lipopolysaccharide (LPS) as an in vitro inflammatory model to explore the roles of PD-L1 on the migration and immunosuppression of MSC. Our results demonstrate that in hADMSCs, LPS significantly increased PD-L1 expression, which mediated the migration of the LPS-treated hADMSCs via CXCR4. In addition, we found that the increased PD-L1 expression in the LPS-treated hADMSCs inhibited B cell proliferation and immunoglobulin G secretion through nuclear factor-κB. Our study suggests that the PD-L1 plays critical roles in the homing and immunosuppression of MSCs which are a promising cell therapy to treat inflammatory diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PD-L1 在炎症微环境下人脂肪间充质干细胞中的作用
间充质干细胞(MSCs)具有独特的归巢和免疫抑制功能,因此有望用于炎症性疾病的细胞治疗。众所周知,C-X-C趋化因子受体4型(CXCR4,又称CD184)是间充质干细胞迁移的关键受体,而蛋白程序性死亡配体-1(PD-L1)参与了间充质干细胞的免疫抑制。然而,目前仍不清楚在炎症微环境下如何通过分子机制调控 PD-L1 的表达以促进间充质干细胞的迁移和免疫抑制。本文利用经脂多糖(LPS)处理的人脂肪间充质干细胞(hADMSCs)作为体外炎症模型,探讨了PD-L1在间充质干细胞迁移和免疫抑制中的作用。我们的结果表明,在 hADMSCs 中,LPS 显著增加了 PD-L1 的表达,而 PD-L1 通过 CXCR4 介导了经 LPS 处理的 hADMSCs 的迁移。此外,我们还发现经 LPS 处理的 hADMSCs 中 PD-L1 表达的增加通过核因子-κB 抑制了 B 细胞的增殖和免疫球蛋白 G 的分泌。我们的研究表明,PD-L1在间充质干细胞的归巢和免疫抑制过程中发挥着关键作用,而间充质干细胞是一种治疗炎症性疾病的前景广阔的细胞疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of cellular biochemistry
Journal of cellular biochemistry 生物-生化与分子生物学
CiteScore
9.90
自引率
0.00%
发文量
164
审稿时长
1 months
期刊介绍: The Journal of Cellular Biochemistry publishes descriptions of original research in which complex cellular, pathogenic, clinical, or animal model systems are studied by biochemical, molecular, genetic, epigenetic or quantitative ultrastructural approaches. Submission of papers reporting genomic, proteomic, bioinformatics and systems biology approaches to identify and characterize parameters of biological control in a cellular context are encouraged. The areas covered include, but are not restricted to, conditions, agents, regulatory networks, or differentiation states that influence structure, cell cycle & growth control, structure-function relationships.
期刊最新文献
Role of Sodium-Dependent Vitamin C Transporter-2 and Ascorbate in Regulating the Hypoxic Pathway in Cultured Glioblastoma Cells. RETRACTION: Fibroblast Growth Factor-2 Promotes Catabolism via FGFR1-Ras-Raf-MEK1/2-ERK1/2 Axis That Coordinates With the PKCδ Pathway in Human Articular Chondrocytes. RETRACTION: Propofol-Induced miR-219-5p Inhibits Growth and Invasion of Hepatocellular Carcinoma Through Suppression of GPC3-Mediated Wnt/β-Catenin Signalling Activation. EXPRESSION OF CONCERN: Nrf2 Dependent Antiaging Effect of Milk-Derived Bioactive Peptide in Old Fibroblasts. RETRACTION: MiR-625-5p/PKM2 Negatively Regulates Melanoma Glycolysis State.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1