The neuroprotective effects of baobab and black seed on the rat hippocampus exposed to a 900-MHz electromagnetic field

IF 2.7 4区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of chemical neuroanatomy Pub Date : 2024-03-04 DOI:10.1016/j.jchemneu.2024.102405
Hamza Mohamed , Omur Gulsum Deniz , Suleyman Kaplan
{"title":"The neuroprotective effects of baobab and black seed on the rat hippocampus exposed to a 900-MHz electromagnetic field","authors":"Hamza Mohamed ,&nbsp;Omur Gulsum Deniz ,&nbsp;Suleyman Kaplan","doi":"10.1016/j.jchemneu.2024.102405","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the potential effects on the hippocampus of electromagnetic fields (EMFs) disseminated by mobile phones and the roles of baobab (<em>Adansonia digitata</em>) (AD) and black seed (<em>Nigella sativa</em>) (BS) in mitigating these. Fifty-six male, 12-week-old <em>Wistar albino</em> rats were divided into eight groups of seven animals each. No EMF exposure was applied to the control, AD or BS groups, while the rats in the Sham group were placed in an EMF system with no exposure. A 900-MHz EMF was applied to the EMF+AD, EMF+BS, EMF+AD+BS and EMF groups for 1 hour a day for 28 days. Pyramidal neurons in the hippocampus were subsequently counted using the optical fractionator technique, one of the unbiased stereological methods. Tissue sections were also evaluated histopathologically under light and electron microscopy. The activities of the enzymes catalase (CAT) and superoxide dismutase (SOD) were also determined in blood serum samples. Analysis of the stereological data revealed no statistically significant differences between the EMF and control or sham groups in terms of pyramidal neuron numbers (p&gt;0.05). However, stereological examination revealed a crucial difference in the entire hippocampus between the control group and the AD (p&lt;0.01) and BS (p&lt;0.05) groups. Moreover, exposure to 900-MHz EMF produced adverse changes in the structures of neurons at histopathological analysis. Qualitative examinations suggest that a combination of herbal products such as AD and BS exerts a protective effect against such EMF side-effects.</p></div>","PeriodicalId":15324,"journal":{"name":"Journal of chemical neuroanatomy","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891061824000188","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the potential effects on the hippocampus of electromagnetic fields (EMFs) disseminated by mobile phones and the roles of baobab (Adansonia digitata) (AD) and black seed (Nigella sativa) (BS) in mitigating these. Fifty-six male, 12-week-old Wistar albino rats were divided into eight groups of seven animals each. No EMF exposure was applied to the control, AD or BS groups, while the rats in the Sham group were placed in an EMF system with no exposure. A 900-MHz EMF was applied to the EMF+AD, EMF+BS, EMF+AD+BS and EMF groups for 1 hour a day for 28 days. Pyramidal neurons in the hippocampus were subsequently counted using the optical fractionator technique, one of the unbiased stereological methods. Tissue sections were also evaluated histopathologically under light and electron microscopy. The activities of the enzymes catalase (CAT) and superoxide dismutase (SOD) were also determined in blood serum samples. Analysis of the stereological data revealed no statistically significant differences between the EMF and control or sham groups in terms of pyramidal neuron numbers (p>0.05). However, stereological examination revealed a crucial difference in the entire hippocampus between the control group and the AD (p<0.01) and BS (p<0.05) groups. Moreover, exposure to 900-MHz EMF produced adverse changes in the structures of neurons at histopathological analysis. Qualitative examinations suggest that a combination of herbal products such as AD and BS exerts a protective effect against such EMF side-effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
猴面包树和黑籽对暴露于900兆赫电磁场的大鼠海马神经的保护作用
本研究调查了移动电话传播的电磁场(EMF)对海马的潜在影响,以及猴面包树(Adansonia digitata)(AD)和黑种草(Nigella sativa)(BS)在减轻这些影响方面的作用。56 只 12 周大的雄性 Wistar 白化大鼠被分成 8 组,每组 7 只。对照组、AD 组和 BS 组不接触电磁场,而 Sham 组的大鼠则被放置在一个不接触电磁场的系统中。对EMF+AD组、EMF+BS组、EMF+AD+BS组和EMF组施加900兆赫的电磁场,每天1小时,持续28天。随后使用无偏立体学方法之一的光学分型器技术对海马中的锥体神经元进行计数。组织切片也在光镜和电子显微镜下进行了组织病理学评估。此外,还测定了血清样本中过氧化氢酶(CAT)和超氧化物歧化酶(SOD)的活性。立体学数据分析显示,就锥体神经元数量而言,EMF 组与对照组或假神经元组之间没有显著的统计学差异(P>0.05)。然而,立体学检查显示,对照组和 AD 组在整个海马体上存在关键性差异(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of chemical neuroanatomy
Journal of chemical neuroanatomy 医学-神经科学
CiteScore
4.50
自引率
3.60%
发文量
87
审稿时长
62 days
期刊介绍: The Journal of Chemical Neuroanatomy publishes scientific reports relating the functional and biochemical aspects of the nervous system with its microanatomical organization. The scope of the journal concentrates on reports which combine microanatomical, biochemical, pharmacological and behavioural approaches. Papers should offer original data correlating the morphology of the nervous system (the brain and spinal cord in particular) with its biochemistry. The Journal of Chemical Neuroanatomy is particularly interested in publishing important studies performed with up-to-date methodology utilizing sensitive chemical microassays, hybridoma technology, immunocytochemistry, in situ hybridization and receptor radioautography, to name a few examples. The Journal of Chemical Neuroanatomy is the natural vehicle for integrated studies utilizing these approaches. The articles will be selected by the editorial board and invited reviewers on the basis of their excellence and potential contribution to this field of neurosciences. Both in vivo and in vitro integrated studies in chemical neuroanatomy are appropriate subjects of interest to the journal. These studies should relate only to vertebrate species with particular emphasis on the mammalian and primate nervous systems.
期刊最新文献
Editorial Board Retraction notice to “Astrocyte response to melatonin treatment in rats under high-carbohydrate high-fat diet” [J. Chem. Neuroanat. 136 (2024) 102389] Retraction notice to “Coenzyme Q10 attenuates neurodegeneration in the cerebellum induced by chronic exposure to tramadol” [J. Chem. Neuroanat. 135 (2024) 102367] Retraction notice to “Maternal diabetes-induced alterations in the expression of brain-derived neurotrophic factor in the developing rat hippocampus” [J. Chem. Neuroanat. 114(2021) 101946] Retraction notice to “Aqueous leaf extract of Phyllanthus amarus protects against oxidative stress and misfiring of dopaminergic neurons in Paraquat-induced Parkinson's disease-like model of adult Wistar rats” [J. Chem. Neuroanat. 135 (2024) 102365]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1