The role of process parameters and printing position on meltpool variations in LPBF Hastelloy X: Insights into laser-plume interaction

IF 4.2 Q2 ENGINEERING, MANUFACTURING Additive manufacturing letters Pub Date : 2024-03-01 DOI:10.1016/j.addlet.2024.100203
Jian Tang , Rafal Wróbel , Pooriya Scheel , Willy Gaechter , Christian Leinenbach , Ehsan Hosseini
{"title":"The role of process parameters and printing position on meltpool variations in LPBF Hastelloy X: Insights into laser-plume interaction","authors":"Jian Tang ,&nbsp;Rafal Wróbel ,&nbsp;Pooriya Scheel ,&nbsp;Willy Gaechter ,&nbsp;Christian Leinenbach ,&nbsp;Ehsan Hosseini","doi":"10.1016/j.addlet.2024.100203","DOIUrl":null,"url":null,"abstract":"<div><p>Meltpool dimensions play a pivotal role in defining the defects and microstructure state of Laser Powder Bed Fusion (LPBF) builds. Therefore, it is crucial to investigate variations in meltpool geometries under different process conditions. In this work, we fabricated single tracks of LPBF Hastelloy X (HX) alloy under 36 printing conditions and examined the corresponding cross-section meltpool dimensions at two locations across the build platform. This investigation demonstrates the impacts of laser power, scan speed, powder layer thickness, and printing locations on resultant meltpool dimensions. As expected, we observed that meltpool dimensions increase as laser power increases or scan speed decreases. It was also concluded that thicker powder layers lead to wider and shallower meltpools due to reduced laser energy penetration into the solid beneath the powder layer. Additionally, the meltpool dimensions show variations dependent on deposition locations due to the different levels of interaction of the laser and its induced vapor plume, resulting in shallower and wider meltpools. These findings provide a systematic understanding of meltpool dimension variations across various process conditions for LPBF HX alloy, which ultimately offer insights into the formation of defects and microstructure features.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772369024000124/pdfft?md5=7fd96b76f55bcd16ecbd3194e32dda25&pid=1-s2.0-S2772369024000124-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772369024000124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Meltpool dimensions play a pivotal role in defining the defects and microstructure state of Laser Powder Bed Fusion (LPBF) builds. Therefore, it is crucial to investigate variations in meltpool geometries under different process conditions. In this work, we fabricated single tracks of LPBF Hastelloy X (HX) alloy under 36 printing conditions and examined the corresponding cross-section meltpool dimensions at two locations across the build platform. This investigation demonstrates the impacts of laser power, scan speed, powder layer thickness, and printing locations on resultant meltpool dimensions. As expected, we observed that meltpool dimensions increase as laser power increases or scan speed decreases. It was also concluded that thicker powder layers lead to wider and shallower meltpools due to reduced laser energy penetration into the solid beneath the powder layer. Additionally, the meltpool dimensions show variations dependent on deposition locations due to the different levels of interaction of the laser and its induced vapor plume, resulting in shallower and wider meltpools. These findings provide a systematic understanding of meltpool dimension variations across various process conditions for LPBF HX alloy, which ultimately offer insights into the formation of defects and microstructure features.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工艺参数和印刷位置对 LPBF 哈氏合金 X 熔池变化的影响:激光与熔池相互作用的启示
熔池尺寸在确定激光粉末床熔融(LPBF)构建的缺陷和微观结构状态方面起着关键作用。因此,研究不同工艺条件下熔池几何尺寸的变化至关重要。在这项工作中,我们在 36 种打印条件下制造了 LPBF 哈氏合金 X (HX) 的单轨,并在整个构建平台的两个位置检测了相应的横截面熔池尺寸。这项研究证明了激光功率、扫描速度、粉末层厚度和打印位置对熔池尺寸的影响。正如预期的那样,我们观察到熔池尺寸随着激光功率的增加或扫描速度的降低而增加。我们还得出结论,较厚的粉末层会导致较宽和较浅的熔池,原因是激光能量对粉末层下固体的穿透力降低。此外,由于激光与其诱导的蒸汽羽流的相互作用程度不同,熔池尺寸随沉积位置的不同而变化,从而导致熔池更浅、更宽。这些发现为我们系统地了解 LPBF HX 合金在不同工艺条件下的熔池尺寸变化提供了依据,最终有助于深入了解缺陷和微观结构特征的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
期刊最新文献
Modelling process monitoring data in laser powder bed fusion: A pragmatic route to additive manufacturing quality assurance Drop-on-demand 3D printing of programable magnetic composites for soft robotics In-situ heating TEM observation of solidification cell evolutions in an Al-Fe alloy built by laser-powder bed fusion A non-melting additive approach to structural repair of aluminum aircraft fastener holes Enabling tailored microstructures by hybrid directed energy deposition processing of a nickel-based superalloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1