CSPFormer: A cross-spatial pyramid transformer for visual place recognition

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-03-05 DOI:10.1016/j.neucom.2024.127472
Zhenyu Li , Pengjie Xu
{"title":"CSPFormer: A cross-spatial pyramid transformer for visual place recognition","authors":"Zhenyu Li ,&nbsp;Pengjie Xu","doi":"10.1016/j.neucom.2024.127472","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the Vision Transformer (ViT), which applied the Transformer structure to various visual detection tasks, has outperformed convolutional neural networks (CNNs). Nonetheless, due to the lack of scale representation ability of the Transformer, how to extract the local features of the scene to effectively form a global descriptor is still a challenging problem. In the paper, we propose a Cross-Spatial Pyramid Transformer (CSPFormer) to learn the discriminative global descriptors from multi-scale visual features for efficient visual place recognition. Specifically, we first develop a pyramid CNN module that can extract multi-scale visual feature representations. Then, the extracted feature representations of multi-scales are input to multiple connected spatial pyramid Transformer modules that adaptively learn the spatial relationship of the different scale descriptors, where the multiple self-attention is applied to learn a global descriptor from discriminative local descriptors. CNN pyramid features and Transformer multi-scale features are mutually weighted to perform cross-spatial feature representation. The multiple self-attention enhances the long-term dependencies of multi-scale visual descriptors and reduces the computational cost. To obtain the final place-matching result accurately, the cosine function is used to calculate the spatial similarity between the two scenes. Experimental results on public place datasets show that the proposed method achieves state-of-the-art on large-scale visual place recognition tasks. Our model has achieved 94.7%, 92.8%, 91.3%, and 95.7% average recall based on the top 1% candidate scenario on KITTI, Nordland, VPRICE, and EuRoc datasets, respectively.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"580 ","pages":"Article 127472"},"PeriodicalIF":5.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224002431","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the Vision Transformer (ViT), which applied the Transformer structure to various visual detection tasks, has outperformed convolutional neural networks (CNNs). Nonetheless, due to the lack of scale representation ability of the Transformer, how to extract the local features of the scene to effectively form a global descriptor is still a challenging problem. In the paper, we propose a Cross-Spatial Pyramid Transformer (CSPFormer) to learn the discriminative global descriptors from multi-scale visual features for efficient visual place recognition. Specifically, we first develop a pyramid CNN module that can extract multi-scale visual feature representations. Then, the extracted feature representations of multi-scales are input to multiple connected spatial pyramid Transformer modules that adaptively learn the spatial relationship of the different scale descriptors, where the multiple self-attention is applied to learn a global descriptor from discriminative local descriptors. CNN pyramid features and Transformer multi-scale features are mutually weighted to perform cross-spatial feature representation. The multiple self-attention enhances the long-term dependencies of multi-scale visual descriptors and reduces the computational cost. To obtain the final place-matching result accurately, the cosine function is used to calculate the spatial similarity between the two scenes. Experimental results on public place datasets show that the proposed method achieves state-of-the-art on large-scale visual place recognition tasks. Our model has achieved 94.7%, 92.8%, 91.3%, and 95.7% average recall based on the top 1% candidate scenario on KITTI, Nordland, VPRICE, and EuRoc datasets, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSPFormer:用于视觉地点识别的跨空间金字塔变换器
最近,将变换器结构应用于各种视觉检测任务的视觉变换器(Vision Transformer,ViT)的表现优于卷积神经网络(CNN)。然而,由于变换器缺乏规模表示能力,如何提取场景的局部特征以有效形成全局描述符仍是一个具有挑战性的问题。在本文中,我们提出了一种跨空间金字塔变换器(CSPFormer),以从多尺度视觉特征中学习具有区分性的全局描述符,从而实现高效的视觉地点识别。具体来说,我们首先开发了一个能提取多尺度视觉特征表征的金字塔 CNN 模块。然后,将提取的多尺度特征表征输入到多个连接的空间金字塔转换器模块中,这些模块可自适应地学习不同尺度描述符的空间关系,在此过程中应用多重自注意,从具有区分性的局部描述符中学习全局描述符。CNN 金字塔特征和 Transformer 多尺度特征相互加权,以执行跨空间特征表示。多重自我注意增强了多尺度视觉描述符的长期依赖性,并降低了计算成本。为了准确获得最终的地点匹配结果,使用余弦函数来计算两个场景之间的空间相似性。在公共场所数据集上的实验结果表明,所提出的方法在大规模视觉场所识别任务中达到了最先进的水平。在 KITTI、Nordland、VPRICE 和 EuRoc 数据集上,我们的模型基于前 1%候选场景的平均召回率分别达到了 94.7%、92.8%、91.3% 和 95.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
A reformulation neurodynamic algorithm for distributed nonconvex optimization Student behavior detection model based on multilevel residual networks and hybrid attention mechanisms Pool-mamba: Pooling state space model for low-light image enhancement Label self-correction intelligent diagnosis method and embedded system for axle box bearings of high-speed trains with noisy labels Domain-wise knowledge decoupling for personalized federated learning via Radon transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1