{"title":"Domain-wise knowledge decoupling for personalized federated learning via Radon transform","authors":"Zihao Lu, Junli Wang, Changjun Jiang","doi":"10.1016/j.neucom.2025.130013","DOIUrl":null,"url":null,"abstract":"<div><div>Personalized federated learning (pFL) customizes local models to address heterogeneous data across clients. One prominent research direction in pFL is model decoupling, where the knowledge of a global model is selectively utilized to assist local model personalization. Prior studies primarily use decoupled global-model parameters to convey this selected knowledge. However, due to the task-related knowledge-mixing nature of deep learning models, using these parameters may introduce irrelevant knowledge to specific clients, impeding personalization. To address this, we propose a domain-wise knowledge decoupling approach (pFedDKD), which decouples global-model knowledge into diverse projection segments in the representation space, meeting the specific needs of clients on heterogeneous local domains. A Radon transform-based method is provided to facilitate this decoupling, enabling clients to extract relevant knowledge segments for personalization. Besides, we provide a distillation-based back-projection learning method to fuse local-model knowledge into the global model, ensuring the updated global-model knowledge remains decouplable by projection. A theoretical analysis confirms that our approach improves generalization. Extensive experiments on four datasets demonstrate that pFedDKD consistently outperforms eleven state-of-the-art baselines, achieving an average improvement of 1.21% in test accuracy over the best-performing baseline.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"635 ","pages":"Article 130013"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122500685X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Personalized federated learning (pFL) customizes local models to address heterogeneous data across clients. One prominent research direction in pFL is model decoupling, where the knowledge of a global model is selectively utilized to assist local model personalization. Prior studies primarily use decoupled global-model parameters to convey this selected knowledge. However, due to the task-related knowledge-mixing nature of deep learning models, using these parameters may introduce irrelevant knowledge to specific clients, impeding personalization. To address this, we propose a domain-wise knowledge decoupling approach (pFedDKD), which decouples global-model knowledge into diverse projection segments in the representation space, meeting the specific needs of clients on heterogeneous local domains. A Radon transform-based method is provided to facilitate this decoupling, enabling clients to extract relevant knowledge segments for personalization. Besides, we provide a distillation-based back-projection learning method to fuse local-model knowledge into the global model, ensuring the updated global-model knowledge remains decouplable by projection. A theoretical analysis confirms that our approach improves generalization. Extensive experiments on four datasets demonstrate that pFedDKD consistently outperforms eleven state-of-the-art baselines, achieving an average improvement of 1.21% in test accuracy over the best-performing baseline.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.