Mariano Banquiero, Gracia Valdeolivas, David Ramón, M.-Carmen Juan
{"title":"A color Passthrough mixed reality application for learning piano","authors":"Mariano Banquiero, Gracia Valdeolivas, David Ramón, M.-Carmen Juan","doi":"10.1007/s10055-024-00953-w","DOIUrl":null,"url":null,"abstract":"<p>This work presents the development of a mixed reality (MR) application that uses color Passthrough for learning to play the piano. A study was carried out to compare the interpretation outcomes of the participants and their subjective experience when using the MR application developed to learn to play the piano with a system that used Synthesia (<i>N</i> = 33). The results show that the MR application and Synthesia were effective in learning piano. However, the students played the pieces significantly better when using the MR application. The two applications both provided a satisfying user experience. However, the subjective experience of the students was better when they used the MR application. Other conclusions derived from the study include the following: (1) The outcomes of the students and their subjective opinion about the experience when using the MR application were independent of age and gender; (2) the sense of presence offered by the MR application was high (above 6 on a scale of 1 to 7); (3) the adverse effects induced by wearing the Meta Quest Pro and using our MR application were negligible; and (4) the students showed their preference for the MR application. As a conclusion, the advantage of our MR application compared to other types of applications (e.g., non-projected piano roll notation) is that the user has a direct view of the piano and the help elements appear integrated in the user’s view. The user does not have to take their eyes off the keyboard and is focused on playing the piano.</p>","PeriodicalId":23727,"journal":{"name":"Virtual Reality","volume":"82 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virtual Reality","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10055-024-00953-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the development of a mixed reality (MR) application that uses color Passthrough for learning to play the piano. A study was carried out to compare the interpretation outcomes of the participants and their subjective experience when using the MR application developed to learn to play the piano with a system that used Synthesia (N = 33). The results show that the MR application and Synthesia were effective in learning piano. However, the students played the pieces significantly better when using the MR application. The two applications both provided a satisfying user experience. However, the subjective experience of the students was better when they used the MR application. Other conclusions derived from the study include the following: (1) The outcomes of the students and their subjective opinion about the experience when using the MR application were independent of age and gender; (2) the sense of presence offered by the MR application was high (above 6 on a scale of 1 to 7); (3) the adverse effects induced by wearing the Meta Quest Pro and using our MR application were negligible; and (4) the students showed their preference for the MR application. As a conclusion, the advantage of our MR application compared to other types of applications (e.g., non-projected piano roll notation) is that the user has a direct view of the piano and the help elements appear integrated in the user’s view. The user does not have to take their eyes off the keyboard and is focused on playing the piano.
期刊介绍:
The journal, established in 1995, publishes original research in Virtual Reality, Augmented and Mixed Reality that shapes and informs the community. The multidisciplinary nature of the field means that submissions are welcomed on a wide range of topics including, but not limited to:
Original research studies of Virtual Reality, Augmented Reality, Mixed Reality and real-time visualization applications
Development and evaluation of systems, tools, techniques and software that advance the field, including:
Display technologies, including Head Mounted Displays, simulators and immersive displays
Haptic technologies, including novel devices, interaction and rendering
Interaction management, including gesture control, eye gaze, biosensors and wearables
Tracking technologies
VR/AR/MR in medicine, including training, surgical simulation, rehabilitation, and tissue/organ modelling.
Impactful and original applications and studies of VR/AR/MR’s utility in areas such as manufacturing, business, telecommunications, arts, education, design, entertainment and defence
Research demonstrating new techniques and approaches to designing, building and evaluating virtual and augmented reality systems
Original research studies assessing the social, ethical, data or legal aspects of VR/AR/MR.