{"title":"Generative channel estimation for intelligent reflecting surface-aided wireless communication","authors":"","doi":"10.1007/s11276-024-03688-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Intelligent reflecting surface (IRS) has emerged as a viable technology to enhance the spectral efficiency of wireless communication systems by intelligently controlling wireless signal propagation. In wireless communication governed by the IRS, the acquisition of channel state information (CSI) is essential for designing the optimal beamforming. However, acquiring the CSI is difficult as the IRS does not have radio frequency chains to transmit/receive signals and the capability to process the signals is also limited. The cascaded channel linking the base station (BS) and a user through the IRS does not necessarily adhere to a specific channel distribution. Conventional and deep learning-based techniques for channel estimation face challenges: the pilot overhead and compromised estimation accuracy due to assumptions of prior channel distribution and noisy signal. To overcome these issues a novel generative cascaded channel estimation (GCCE) model based on a generative adversarial network (GAN) is proposed to estimate the cascaded channel. The GGCE model reduces the reliance on pilot signals, effectively minimizing pilot overhead, by deriving CSI from received signal data. To enhance the estimation accuracy, the channel correlation information is provided as a conditioning factor for the GCCE model. Additionally, a denoising network is integrated into the GCCE framework to effectively remove noise from the received signal. These integrations collectively enhance the estimation accuracy of the GCCE model compared to the initial GAN setup. Experimental results illustrate the superiority of the proposed GCCE model over conventional and deep learning techniques when provided with the same pilot count.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"62 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03688-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent reflecting surface (IRS) has emerged as a viable technology to enhance the spectral efficiency of wireless communication systems by intelligently controlling wireless signal propagation. In wireless communication governed by the IRS, the acquisition of channel state information (CSI) is essential for designing the optimal beamforming. However, acquiring the CSI is difficult as the IRS does not have radio frequency chains to transmit/receive signals and the capability to process the signals is also limited. The cascaded channel linking the base station (BS) and a user through the IRS does not necessarily adhere to a specific channel distribution. Conventional and deep learning-based techniques for channel estimation face challenges: the pilot overhead and compromised estimation accuracy due to assumptions of prior channel distribution and noisy signal. To overcome these issues a novel generative cascaded channel estimation (GCCE) model based on a generative adversarial network (GAN) is proposed to estimate the cascaded channel. The GGCE model reduces the reliance on pilot signals, effectively minimizing pilot overhead, by deriving CSI from received signal data. To enhance the estimation accuracy, the channel correlation information is provided as a conditioning factor for the GCCE model. Additionally, a denoising network is integrated into the GCCE framework to effectively remove noise from the received signal. These integrations collectively enhance the estimation accuracy of the GCCE model compared to the initial GAN setup. Experimental results illustrate the superiority of the proposed GCCE model over conventional and deep learning techniques when provided with the same pilot count.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.