Multi-Layer Collaborative Federated Learning architecture for 6G Open RAN

IF 2.1 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Wireless Networks Pub Date : 2024-09-05 DOI:10.1007/s11276-024-03823-0
Borui Zhao, Qimei Cui, Wei Ni, Xueqi Li, Shengyuan Liang
{"title":"Multi-Layer Collaborative Federated Learning architecture for 6G Open RAN","authors":"Borui Zhao, Qimei Cui, Wei Ni, Xueqi Li, Shengyuan Liang","doi":"10.1007/s11276-024-03823-0","DOIUrl":null,"url":null,"abstract":"<p>The emerging sixth-generation (6G) systems aim to integrate machine learning (ML) capabilities into the network architecture. Open Radio Access Network (O-RAN) is a paradigm that supports this vision. However, deep integration of 6G edge intelligence and O-RAN can face challenges in efficient execution of ML tasks due to finite link bandwidth and data privacy concerns. We propose a new Multi-Layer Collaborative Federated Learning (MLCFL) architecture for O-RAN, as well as a workflow and deployment design, which are demonstrated through the important RAN use case of intelligent mobility management. Simulation results show that MLCFL effectively improves the mobility prediction and reduces energy consumption and delay through flexible deployment adjustments. MLCFL has the potential to advance the O-RAN architecture design and provides guidelines for efficient deployment of edge intelligence in 6G.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"4 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03823-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging sixth-generation (6G) systems aim to integrate machine learning (ML) capabilities into the network architecture. Open Radio Access Network (O-RAN) is a paradigm that supports this vision. However, deep integration of 6G edge intelligence and O-RAN can face challenges in efficient execution of ML tasks due to finite link bandwidth and data privacy concerns. We propose a new Multi-Layer Collaborative Federated Learning (MLCFL) architecture for O-RAN, as well as a workflow and deployment design, which are demonstrated through the important RAN use case of intelligent mobility management. Simulation results show that MLCFL effectively improves the mobility prediction and reduces energy consumption and delay through flexible deployment adjustments. MLCFL has the potential to advance the O-RAN architecture design and provides guidelines for efficient deployment of edge intelligence in 6G.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向 6G 开放式 RAN 的多层协作联邦学习架构
新兴的第六代(6G)系统旨在将机器学习(ML)功能集成到网络架构中。开放无线接入网(O-RAN)是支持这一愿景的范例。然而,由于链路带宽有限和数据隐私问题,6G 边缘智能与 O-RAN 的深度集成在高效执行 ML 任务方面可能面临挑战。我们为 O-RAN 提出了一种新的多层协作联合学习(MLCFL)架构以及工作流程和部署设计,并通过智能移动管理这一重要的 RAN 用例进行了演示。仿真结果表明,MLCFL 通过灵活的部署调整,有效改善了移动性预测,降低了能耗和延迟。MLCFL 有潜力推进 O-RAN 架构设计,并为 6G 边缘智能的高效部署提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wireless Networks
Wireless Networks 工程技术-电信学
CiteScore
7.70
自引率
3.30%
发文量
314
审稿时长
5.5 months
期刊介绍: The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere. Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.
期刊最新文献
An EEG signal-based music treatment system for autistic children using edge computing devices A DV-Hop localization algorithm corrected based on multi-strategy sparrow algorithm in sea-surface wireless sensor networks Multi-Layer Collaborative Federated Learning architecture for 6G Open RAN Cloud-edge collaboration-based task offloading strategy in railway IoT for intelligent detection Exploiting data transmission for route discoveries in mobile ad hoc networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1