Exploring the use of ChatGPT in predicting anterior circulation stroke functional outcomes after mechanical thrombectomy: a pilot study.

IF 4.5 1区 医学 Q1 NEUROIMAGING Journal of NeuroInterventional Surgery Pub Date : 2025-02-14 DOI:10.1136/jnis-2024-021556
Tiago Pedro, José Maria Sousa, Luísa Fonseca, Manuel G Gama, Goreti Moreira, Mariana Pintalhão, Paulo C Chaves, Ana Aires, Gonçalo Alves, Luís Augusto, Luís Pinheiro Albuquerque, Pedro Castro, Maria Luís Silva
{"title":"Exploring the use of ChatGPT in predicting anterior circulation stroke functional outcomes after mechanical thrombectomy: a pilot study.","authors":"Tiago Pedro, José Maria Sousa, Luísa Fonseca, Manuel G Gama, Goreti Moreira, Mariana Pintalhão, Paulo C Chaves, Ana Aires, Gonçalo Alves, Luís Augusto, Luís Pinheiro Albuquerque, Pedro Castro, Maria Luís Silva","doi":"10.1136/jnis-2024-021556","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate prediction of functional outcomes is crucial in stroke management, but this remains challenging.</p><p><strong>Objective: </strong>To evaluate the performance of the generative language model ChatGPT in predicting the functional outcome of patients with acute ischemic stroke (AIS) 3 months after mechanical thrombectomy (MT) in order to assess whether ChatGPT can used to be accurately predict the modified Rankin Scale (mRS) score at 3 months post-thrombectomy.</p><p><strong>Methods: </strong>We conducted a retrospective analysis of clinical, neuroimaging, and procedure-related data from 163 patients with AIS undergoing MT. The agreement between ChatGPT's exact and dichotomized predictions and actual mRS scores was assessed using Cohen's κ. The added value of ChatGPT was measured by evaluating the agreement of predicted dichotomized outcomes using an existing validated score, the MT-DRAGON.</p><p><strong>Results: </strong>ChatGPT demonstrated fair (κ=0.354, 95% CI 0.260 to 0.448) and good (κ=0.727, 95% CI 0.620 to 0.833) agreement with the true exact and dichotomized mRS scores at 3 months, respectively, outperforming MT-DRAGON in overall and subgroup predictions. ChatGPT agreement was higher for patients with shorter last-time-seen-well-to-door delay, distal occlusions, and better modified Thrombolysis in Cerebral Infarction scores.</p><p><strong>Conclusions: </strong>ChatGPT adequately predicted short-term functional outcomes in post-thrombectomy patients with AIS and was better than the existing risk score. Integrating AI models into clinical practice holds promise for patient care, yet refining these models is crucial for enhanced accuracy in stroke management.</p>","PeriodicalId":16411,"journal":{"name":"Journal of NeuroInterventional Surgery","volume":" ","pages":"261-265"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroInterventional Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnis-2024-021556","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate prediction of functional outcomes is crucial in stroke management, but this remains challenging.

Objective: To evaluate the performance of the generative language model ChatGPT in predicting the functional outcome of patients with acute ischemic stroke (AIS) 3 months after mechanical thrombectomy (MT) in order to assess whether ChatGPT can used to be accurately predict the modified Rankin Scale (mRS) score at 3 months post-thrombectomy.

Methods: We conducted a retrospective analysis of clinical, neuroimaging, and procedure-related data from 163 patients with AIS undergoing MT. The agreement between ChatGPT's exact and dichotomized predictions and actual mRS scores was assessed using Cohen's κ. The added value of ChatGPT was measured by evaluating the agreement of predicted dichotomized outcomes using an existing validated score, the MT-DRAGON.

Results: ChatGPT demonstrated fair (κ=0.354, 95% CI 0.260 to 0.448) and good (κ=0.727, 95% CI 0.620 to 0.833) agreement with the true exact and dichotomized mRS scores at 3 months, respectively, outperforming MT-DRAGON in overall and subgroup predictions. ChatGPT agreement was higher for patients with shorter last-time-seen-well-to-door delay, distal occlusions, and better modified Thrombolysis in Cerebral Infarction scores.

Conclusions: ChatGPT adequately predicted short-term functional outcomes in post-thrombectomy patients with AIS and was better than the existing risk score. Integrating AI models into clinical practice holds promise for patient care, yet refining these models is crucial for enhanced accuracy in stroke management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索使用 ChatGPT 预测机械血栓切除术后前循环卒中功能预后:一项试点研究。
背景:准确预测功能预后对中风治疗至关重要,但这仍是一项挑战:准确预测功能预后对中风治疗至关重要,但这仍具有挑战性:目的:评估生成语言模型 ChatGPT 在预测急性缺血性卒中(AIS)患者机械血栓切除术(MT)术后 3 个月的功能预后方面的性能,以评估 ChatGPT 是否可用于准确预测血栓切除术后 3 个月的改良 Rankin 量表(mRS)评分:我们对 163 名接受 MT 的 AIS 患者的临床、神经影像学和手术相关数据进行了回顾性分析。我们使用 Cohen's κ 评估了 ChatGPT 的精确预测和二分法预测与实际 mRS 评分之间的一致性。ChatGPT 的附加值通过使用现有的有效评分 MT-DRAGON 评估二分法预测结果的一致性来衡量:ChatGPT 与 3 个月时的真实精确 mRS 评分和二分化 mRS 评分的一致性分别为一般(κ=0.354,95% CI 0.260 至 0.448)和良好(κ=0.727,95% CI 0.620 至 0.833),在总体和亚组预测中均优于 MT-DRAGON。对于最后一次见井到门延迟时间较短、远端闭塞和改良脑梗塞溶栓评分较好的患者,ChatGPT的一致性更高:ChatGPT能充分预测血栓切除术后AIS患者的短期功能预后,且优于现有的风险评分。将人工智能模型融入临床实践为患者护理带来了希望,但完善这些模型对提高中风管理的准确性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
14.60%
发文量
291
审稿时长
4-8 weeks
期刊介绍: The Journal of NeuroInterventional Surgery (JNIS) is a leading peer review journal for scientific research and literature pertaining to the field of neurointerventional surgery. The journal launch follows growing professional interest in neurointerventional techniques for the treatment of a range of neurological and vascular problems including stroke, aneurysms, brain tumors, and spinal compression.The journal is owned by SNIS and is also the official journal of the Interventional Chapter of the Australian and New Zealand Society of Neuroradiology (ANZSNR), the Canadian Interventional Neuro Group, the Hong Kong Neurological Society (HKNS) and the Neuroradiological Society of Taiwan.
期刊最新文献
Inter-proceduralist variability in angiographic outcomes after stroke thrombectomy and the importance of quality over quantity of passes. Longitudinal evaluation of neointimal formation using optical coherence tomography for an intracranial aneurysm with flow diverter placement in vivo: preliminary experience. Feasibility and workflow analysis of IV-DSA-based augmented reality-guided brain arteriovenous malformation resection in a hybrid operating room: i-Flow tailored method. Exploring the use of ChatGPT in predicting anterior circulation stroke functional outcomes after mechanical thrombectomy: a pilot study. Prolonged venous transit on perfusion imaging is associated with higher odds of mortality in successfully reperfused patients with large vessel occlusion stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1