Mailton Prestes Madruga, Lucas Kich Grun, Letícya Simone Melo Dos Santos, Frederico Orlando Friedrich, Douglas Bitencourt Antunes, Marcella Elesbão Fogaça Rocha, Pedro Luis Silva, Gilson P Dorneles, Paula Coelho Teixeira, Tiago Franco Oliveira, Pedro R T Romão, Lucas Santos, José Claudio Fonseca Moreira, Vinicius Schenk Michaelsen, Marcelo Cypel, Marcos Otávio Brum Antunes, Marcus Herbert Jones, Florencia María Barbé-Tuana, Moisés Evandro Bauer
{"title":"Excess of body weight is associated with accelerated T-cell senescence in hospitalized COVID-19 patients.","authors":"Mailton Prestes Madruga, Lucas Kich Grun, Letícya Simone Melo Dos Santos, Frederico Orlando Friedrich, Douglas Bitencourt Antunes, Marcella Elesbão Fogaça Rocha, Pedro Luis Silva, Gilson P Dorneles, Paula Coelho Teixeira, Tiago Franco Oliveira, Pedro R T Romão, Lucas Santos, José Claudio Fonseca Moreira, Vinicius Schenk Michaelsen, Marcelo Cypel, Marcos Otávio Brum Antunes, Marcus Herbert Jones, Florencia María Barbé-Tuana, Moisés Evandro Bauer","doi":"10.1186/s12979-024-00423-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Several risk factors have been involved in the poor clinical progression of coronavirus disease-19 (COVID-19), including ageing, and obesity. SARS-CoV-2 may compromise lung function through cell damage and paracrine inflammation; and obesity has been associated with premature immunosenescence, microbial translocation, and dysfunctional innate immune responses leading to poor immune response against a range of viruses and bacterial infections. Here, we have comprehensively characterized the immunosenescence, microbial translocation, and immune dysregulation established in hospitalized COVID-19 patients with different degrees of body weight.</p><p><strong>Results: </strong>Hospitalised COVID-19 patients with overweight and obesity had similarly higher plasma LPS and sCD14 levels than controls (all p < 0.01). Patients with obesity had higher leptin levels than controls. Obesity and overweight patients had similarly higher expansions of classical monocytes and immature natural killer (NK) cells (CD56<sup>+</sup>CD16<sup>-</sup>) than controls. In contrast, reduced proportions of intermediate monocytes, mature NK cells (CD56<sup>+</sup>CD16<sup>+</sup>), and NKT were found in both groups of patients than controls. As expected, COVID-19 patients had a robust expansion of plasmablasts, contrasting to lower proportions of major T-cell subsets (CD4 + and CD8+) than controls. Concerning T-cell activation, overweight and obese patients had lower proportions of CD4<sup>+</sup>CD38<sup>+</sup> cells than controls. Contrasting changes were reported in CD25<sup>+</sup>CD127<sup>low/neg</sup> regulatory T cells, with increased and decreased proportions found in CD4<sup>+</sup> and CD8<sup>+</sup> T cells, respectively. There were similar proportions of T cells expressing checkpoint inhibitors across all groups. We also investigated distinct stages of T-cell differentiation (early, intermediate, and late-differentiated - TEMRA). The intermediate-differentiated CD4 + T cells and TEMRA cells (CD4<sup>+</sup> and CD8<sup>+</sup>) were expanded in patients compared to controls. Senescent T cells can also express NK receptors (NKG2A/D), and patients had a robust expansion of CD8<sup>+</sup>CD57<sup>+</sup>NKG2A<sup>+</sup> cells than controls. Unbiased immune profiling further confirmed the expansions of senescent T cells in COVID-19.</p><p><strong>Conclusions: </strong>These findings suggest that dysregulated immune cells, microbial translocation, and T-cell senescence may partially explain the increased vulnerability to COVID-19 in subjects with excess of body weight.</p>","PeriodicalId":51289,"journal":{"name":"Immunity & Ageing","volume":"21 1","pages":"17"},"PeriodicalIF":5.2000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10921685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity & Ageing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12979-024-00423-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Several risk factors have been involved in the poor clinical progression of coronavirus disease-19 (COVID-19), including ageing, and obesity. SARS-CoV-2 may compromise lung function through cell damage and paracrine inflammation; and obesity has been associated with premature immunosenescence, microbial translocation, and dysfunctional innate immune responses leading to poor immune response against a range of viruses and bacterial infections. Here, we have comprehensively characterized the immunosenescence, microbial translocation, and immune dysregulation established in hospitalized COVID-19 patients with different degrees of body weight.
Results: Hospitalised COVID-19 patients with overweight and obesity had similarly higher plasma LPS and sCD14 levels than controls (all p < 0.01). Patients with obesity had higher leptin levels than controls. Obesity and overweight patients had similarly higher expansions of classical monocytes and immature natural killer (NK) cells (CD56+CD16-) than controls. In contrast, reduced proportions of intermediate monocytes, mature NK cells (CD56+CD16+), and NKT were found in both groups of patients than controls. As expected, COVID-19 patients had a robust expansion of plasmablasts, contrasting to lower proportions of major T-cell subsets (CD4 + and CD8+) than controls. Concerning T-cell activation, overweight and obese patients had lower proportions of CD4+CD38+ cells than controls. Contrasting changes were reported in CD25+CD127low/neg regulatory T cells, with increased and decreased proportions found in CD4+ and CD8+ T cells, respectively. There were similar proportions of T cells expressing checkpoint inhibitors across all groups. We also investigated distinct stages of T-cell differentiation (early, intermediate, and late-differentiated - TEMRA). The intermediate-differentiated CD4 + T cells and TEMRA cells (CD4+ and CD8+) were expanded in patients compared to controls. Senescent T cells can also express NK receptors (NKG2A/D), and patients had a robust expansion of CD8+CD57+NKG2A+ cells than controls. Unbiased immune profiling further confirmed the expansions of senescent T cells in COVID-19.
Conclusions: These findings suggest that dysregulated immune cells, microbial translocation, and T-cell senescence may partially explain the increased vulnerability to COVID-19 in subjects with excess of body weight.
期刊介绍:
Immunity & Ageing is a specialist open access journal that was first published in 2004. The journal focuses on the impact of ageing on immune systems, the influence of aged immune systems on organismal well-being and longevity, age-associated diseases with immune etiology, and potential immune interventions to increase health span. All articles published in Immunity & Ageing are indexed in the following databases: Biological Abstracts, BIOSIS, CAS, Citebase, DOAJ, Embase, Google Scholar, Journal Citation Reports/Science Edition, OAIster, PubMed, PubMed Central, Science Citation Index Expanded, SCImago, Scopus, SOCOLAR, and Zetoc.