Missing values handling for machine learning portfolios

IF 10.4 1区 经济学 Q1 BUSINESS, FINANCE Journal of Financial Economics Pub Date : 2024-03-08 DOI:10.1016/j.jfineco.2024.103815
Andrew Y. Chen , Jack McCoy
{"title":"Missing values handling for machine learning portfolios","authors":"Andrew Y. Chen ,&nbsp;Jack McCoy","doi":"10.1016/j.jfineco.2024.103815","DOIUrl":null,"url":null,"abstract":"<div><p>We characterize the structure and origins of missingness for 159 cross-sectional return predictors and study missing value handling for portfolios constructed using machine learning. Simply imputing with cross-sectional means performs well compared to rigorous expectation-maximization methods. This stems from three facts about predictor data: (1) missingness occurs in large blocks organized by time, (2) cross-sectional correlations are small, and (3) missingness tends to occur in blocks organized by the underlying data source. As a result, observed data provide little information about missing data. Sophisticated imputations introduce estimation noise that can lead to underperformance if machine learning is not carefully applied.</p></div>","PeriodicalId":51346,"journal":{"name":"Journal of Financial Economics","volume":"155 ","pages":"Article 103815"},"PeriodicalIF":10.4000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304405X24000382","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We characterize the structure and origins of missingness for 159 cross-sectional return predictors and study missing value handling for portfolios constructed using machine learning. Simply imputing with cross-sectional means performs well compared to rigorous expectation-maximization methods. This stems from three facts about predictor data: (1) missingness occurs in large blocks organized by time, (2) cross-sectional correlations are small, and (3) missingness tends to occur in blocks organized by the underlying data source. As a result, observed data provide little information about missing data. Sophisticated imputations introduce estimation noise that can lead to underperformance if machine learning is not carefully applied.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
处理机器学习投资组合的缺失值
我们描述了 159 个横截面回报预测因子的结构和缺失原因,并研究了使用机器学习构建的投资组合的缺失值处理方法。与严格的期望最大化方法相比,使用横截面均值进行简单归因的效果很好。这源于预测数据的三个事实:(1)缺失发生在按时间组织的大区块中;(2)横截面相关性很小;(3)缺失往往发生在按基础数据源组织的区块中。因此,观测数据几乎不能提供有关缺失数据的信息。复杂的估算引入了估计噪声,如果不小心应用机器学习,可能会导致性能不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.80
自引率
4.50%
发文量
192
审稿时长
37 days
期刊介绍: The Journal of Financial Economics provides a specialized forum for the publication of research in the area of financial economics and the theory of the firm, placing primary emphasis on the highest quality analytical, empirical, and clinical contributions in the following major areas: capital markets, financial institutions, corporate finance, corporate governance, and the economics of organizations.
期刊最新文献
CEO turnover and director reputation Signals and stigmas from banking interventions: Lessons from the Bank Holiday of 1933 Aspirational utility and investment behavior Arbitrage-based recovery Gig labor: Trading safety nets for steering wheels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1