Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory

J. A. Bennett, N. Orouji, M. Khan, S. Sadeghi, J. Rodgers, M. Abolhasani
{"title":"Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory","authors":"J. A. Bennett, N. Orouji, M. Khan, S. Sadeghi, J. Rodgers, M. Abolhasani","doi":"10.1038/s44286-024-00033-5","DOIUrl":null,"url":null,"abstract":"Ligands play a crucial role in enabling challenging chemical transformations with transition metal-mediated homogeneous catalysts. Despite their undisputed role in homogeneous catalysis, discovery and development of ligands have proven to be a challenging and resource-intensive undertaking. Here, in response, we present a self-driving catalysis laboratory, Fast-Cat, for autonomous and resource-efficient parameter space navigation and Pareto-front mapping of high-temperature, high-pressure, gas–liquid reactions. Fast-Cat enables autonomous ligand benchmarking and multi-objective catalyst performance evaluation with minimal human intervention. Specifically, we utilize Fast-Cat to perform rapid Pareto-front identification of the hydroformylation reaction between syngas (CO and H2) and olefin (1-octene) in the presence of rhodium and various classes of phosphorus-based ligands. By reactor benchmarking, we demonstrate Fast-Cat’s knowledge scalability, essential to fine/specialty chemical industries. We report the details of the modular flow chemistry platform of Fast-Cat and its autonomous experiment-selection strategy for the rapid generation of optimized experimental conditions and in-house data required for supplying machine-learning approaches to reaction and ligand investigations. A self-driving catalysis laboratory, Fast-Cat, is presented for efficient high-throughput screening of high-pressure, high-temperature, gas–liquid reaction conditions using rhodium-catalyzed hydroformylation as a case study. Fast-Cat is used to Pareto map the reaction space and investigate the varying performance of several phosphorus-based hydroformylation ligands.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00033-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00033-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ligands play a crucial role in enabling challenging chemical transformations with transition metal-mediated homogeneous catalysts. Despite their undisputed role in homogeneous catalysis, discovery and development of ligands have proven to be a challenging and resource-intensive undertaking. Here, in response, we present a self-driving catalysis laboratory, Fast-Cat, for autonomous and resource-efficient parameter space navigation and Pareto-front mapping of high-temperature, high-pressure, gas–liquid reactions. Fast-Cat enables autonomous ligand benchmarking and multi-objective catalyst performance evaluation with minimal human intervention. Specifically, we utilize Fast-Cat to perform rapid Pareto-front identification of the hydroformylation reaction between syngas (CO and H2) and olefin (1-octene) in the presence of rhodium and various classes of phosphorus-based ligands. By reactor benchmarking, we demonstrate Fast-Cat’s knowledge scalability, essential to fine/specialty chemical industries. We report the details of the modular flow chemistry platform of Fast-Cat and its autonomous experiment-selection strategy for the rapid generation of optimized experimental conditions and in-house data required for supplying machine-learning approaches to reaction and ligand investigations. A self-driving catalysis laboratory, Fast-Cat, is presented for efficient high-throughput screening of high-pressure, high-temperature, gas–liquid reaction conditions using rhodium-catalyzed hydroformylation as a case study. Fast-Cat is used to Pareto map the reaction space and investigate the varying performance of several phosphorus-based hydroformylation ligands.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自驾车催化实验室自主绘制反应帕累托前沿图
配体在利用过渡金属介导的均相催化剂实现具有挑战性的化学转化方面发挥着至关重要的作用。尽管配体在均相催化中的作用毋庸置疑,但事实证明,配体的发现和开发是一项具有挑战性的资源密集型工作。作为回应,我们在这里展示了一个自动驾驶催化实验室 Fast-Cat,用于自主和资源节约型参数空间导航以及高温、高压、气液反应的帕累托前沿绘图。Fast-Cat 可在最少人工干预的情况下实现自主配体基准和多目标催化剂性能评估。具体来说,我们利用 Fast-Cat 对合成气(CO 和 H2)与烯烃(1-辛烯)在铑和各类磷配体存在下的加氢甲酰化反应进行了快速帕累托前沿识别。通过反应器基准测试,我们展示了 Fast-Cat 的知识可扩展性,这对精细/特种化学工业至关重要。我们报告了 Fast-Cat 模块化流程化学平台及其自主实验选择策略的细节,该策略可快速生成优化的实验条件和内部数据,从而为反应和配体研究提供机器学习方法。以铑催化加氢甲酰化为例,介绍了用于高效高通量筛选高压、高温气液反应条件的自驱动催化实验室 Fast-Cat。Fast-Cat 用于绘制反应空间帕累托图,并研究了几种磷基加氢甲酰化配体的不同性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biodegrading living plastics Reducing desalination energy consumption Recycle, reduce, reform and close the loop Queue in the surfactant molecules Encouraging activity in molecular thermodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1