J. A. Bennett, N. Orouji, M. Khan, S. Sadeghi, J. Rodgers, M. Abolhasani
{"title":"Autonomous reaction Pareto-front mapping with a self-driving catalysis laboratory","authors":"J. A. Bennett, N. Orouji, M. Khan, S. Sadeghi, J. Rodgers, M. Abolhasani","doi":"10.1038/s44286-024-00033-5","DOIUrl":null,"url":null,"abstract":"Ligands play a crucial role in enabling challenging chemical transformations with transition metal-mediated homogeneous catalysts. Despite their undisputed role in homogeneous catalysis, discovery and development of ligands have proven to be a challenging and resource-intensive undertaking. Here, in response, we present a self-driving catalysis laboratory, Fast-Cat, for autonomous and resource-efficient parameter space navigation and Pareto-front mapping of high-temperature, high-pressure, gas–liquid reactions. Fast-Cat enables autonomous ligand benchmarking and multi-objective catalyst performance evaluation with minimal human intervention. Specifically, we utilize Fast-Cat to perform rapid Pareto-front identification of the hydroformylation reaction between syngas (CO and H2) and olefin (1-octene) in the presence of rhodium and various classes of phosphorus-based ligands. By reactor benchmarking, we demonstrate Fast-Cat’s knowledge scalability, essential to fine/specialty chemical industries. We report the details of the modular flow chemistry platform of Fast-Cat and its autonomous experiment-selection strategy for the rapid generation of optimized experimental conditions and in-house data required for supplying machine-learning approaches to reaction and ligand investigations. A self-driving catalysis laboratory, Fast-Cat, is presented for efficient high-throughput screening of high-pressure, high-temperature, gas–liquid reaction conditions using rhodium-catalyzed hydroformylation as a case study. Fast-Cat is used to Pareto map the reaction space and investigate the varying performance of several phosphorus-based hydroformylation ligands.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00033-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00033-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ligands play a crucial role in enabling challenging chemical transformations with transition metal-mediated homogeneous catalysts. Despite their undisputed role in homogeneous catalysis, discovery and development of ligands have proven to be a challenging and resource-intensive undertaking. Here, in response, we present a self-driving catalysis laboratory, Fast-Cat, for autonomous and resource-efficient parameter space navigation and Pareto-front mapping of high-temperature, high-pressure, gas–liquid reactions. Fast-Cat enables autonomous ligand benchmarking and multi-objective catalyst performance evaluation with minimal human intervention. Specifically, we utilize Fast-Cat to perform rapid Pareto-front identification of the hydroformylation reaction between syngas (CO and H2) and olefin (1-octene) in the presence of rhodium and various classes of phosphorus-based ligands. By reactor benchmarking, we demonstrate Fast-Cat’s knowledge scalability, essential to fine/specialty chemical industries. We report the details of the modular flow chemistry platform of Fast-Cat and its autonomous experiment-selection strategy for the rapid generation of optimized experimental conditions and in-house data required for supplying machine-learning approaches to reaction and ligand investigations. A self-driving catalysis laboratory, Fast-Cat, is presented for efficient high-throughput screening of high-pressure, high-temperature, gas–liquid reaction conditions using rhodium-catalyzed hydroformylation as a case study. Fast-Cat is used to Pareto map the reaction space and investigate the varying performance of several phosphorus-based hydroformylation ligands.