首页 > 最新文献

Nature Chemical Engineering最新文献

英文 中文
Illuminating pathways for nanoparticle superlattice self-assembly 照亮纳米粒子超晶格自组装之路
Pub Date : 2024-08-15 DOI: 10.1038/s44286-024-00104-7
Taylor J. Woehl
The final structure of nanoparticle self-assembly intimately depends on the assembly pathway, which has remained obscure due to a lack of sufficiently high-spatiotemporal-resolution direct imaging approaches. Now, combining liquid-cell transmission electron microscopy with molecular dynamics simulations uncovers the complete dynamics of solvent-dependent assembly and phase transitions of nanocube superlattices.
纳米粒子自组装的最终结构与组装途径密切相关,但由于缺乏足够高的时空分辨率直接成像方法,组装途径一直模糊不清。现在,液胞透射电子显微镜与分子动力学模拟相结合,揭示了纳米立方体超晶格的溶剂依赖性组装和相变的完整动力学过程。
{"title":"Illuminating pathways for nanoparticle superlattice self-assembly","authors":"Taylor J. Woehl","doi":"10.1038/s44286-024-00104-7","DOIUrl":"10.1038/s44286-024-00104-7","url":null,"abstract":"The final structure of nanoparticle self-assembly intimately depends on the assembly pathway, which has remained obscure due to a lack of sufficiently high-spatiotemporal-resolution direct imaging approaches. Now, combining liquid-cell transmission electron microscopy with molecular dynamics simulations uncovers the complete dynamics of solvent-dependent assembly and phase transitions of nanocube superlattices.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mathematical argument for teaching faculty 教师教学的数学论证
Pub Date : 2024-08-15 DOI: 10.1038/s44286-024-00100-x
Robert H. Davis
Robert H. Davis argues quantitatively how hiring more teaching faculty could boost both research and teaching.
罗伯特-H-戴维斯(Robert H. Davis)从数量上论证了聘用更多的教学人员如何促进研究和教学。
{"title":"A mathematical argument for teaching faculty","authors":"Robert H. Davis","doi":"10.1038/s44286-024-00100-x","DOIUrl":"10.1038/s44286-024-00100-x","url":null,"abstract":"Robert H. Davis argues quantitatively how hiring more teaching faculty could boost both research and teaching.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Timing the electricity market 把握电力市场的时机
Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00113-6
Mo Qiao
{"title":"Timing the electricity market","authors":"Mo Qiao","doi":"10.1038/s44286-024-00113-6","DOIUrl":"10.1038/s44286-024-00113-6","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable graphene current collectors for enhanced thermal management in batteries 增强电池热管理的可扩展石墨烯电流收集器
Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00105-6
A protocol is demonstrated for the fabrication of dense and defect-free graphene current collectors on the hundred-meter scale. Owing to their high thermal conductivity and dense structures, these current collectors effectively prevent thermal runaway in high-energy pouch cells through the dissipation of localized heat and circumvention of undesirable side reactions, enhancing battery safety.
本文展示了一种在百米级尺度上制造致密无缺陷石墨烯电流收集器的方案。这些电流收集器具有高热导率和致密结构,可通过局部散热和规避不良副反应有效防止高能量袋式电池的热失控,从而提高电池的安全性。
{"title":"Scalable graphene current collectors for enhanced thermal management in batteries","authors":"","doi":"10.1038/s44286-024-00105-6","DOIUrl":"10.1038/s44286-024-00105-6","url":null,"abstract":"A protocol is demonstrated for the fabrication of dense and defect-free graphene current collectors on the hundred-meter scale. Owing to their high thermal conductivity and dense structures, these current collectors effectively prevent thermal runaway in high-energy pouch cells through the dissipation of localized heat and circumvention of undesirable side reactions, enhancing battery safety.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A refuel for heavy-duty transportation 为重型运输工具加油
Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00111-8
Yanfei Zhu
{"title":"A refuel for heavy-duty transportation","authors":"Yanfei Zhu","doi":"10.1038/s44286-024-00111-8","DOIUrl":"10.1038/s44286-024-00111-8","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical engineering, broadly speaking 广义的化学工程
Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00120-7
In this Editorial, we discuss how a broad chemical engineering journal can serve the community.
在这篇社论中,我们将讨论一份内容广泛的化学工程期刊如何为社会服务。
{"title":"Chemical engineering, broadly speaking","authors":"","doi":"10.1038/s44286-024-00120-7","DOIUrl":"10.1038/s44286-024-00120-7","url":null,"abstract":"In this Editorial, we discuss how a broad chemical engineering journal can serve the community.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00120-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A chemical reservoir computer 化学储存库计算机
Pub Date : 2024-08-14 DOI: 10.1038/s44286-024-00109-2
Alessio Lavino
{"title":"A chemical reservoir computer","authors":"Alessio Lavino","doi":"10.1038/s44286-024-00109-2","DOIUrl":"10.1038/s44286-024-00109-2","url":null,"abstract":"","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillating chemical reaction networks stopped cold 摆动的化学反应网络停止了冷启动
Pub Date : 2024-08-07 DOI: 10.1038/s44286-024-00092-8
Wilhelm T. S. Huck
The rates of all enzymatic reactions vary with temperature. Now, it is shown how this temperature sensitivity can be exploited to construct oscillating reaction networks that are able to detect temperature changes with remarkable precision.
所有酶促反应的速率都会随温度变化而变化。现在,我们展示了如何利用这种温度敏感性来构建振荡反应网络,从而能够非常精确地检测温度变化。
{"title":"Oscillating chemical reaction networks stopped cold","authors":"Wilhelm T. S. Huck","doi":"10.1038/s44286-024-00092-8","DOIUrl":"10.1038/s44286-024-00092-8","url":null,"abstract":"The rates of all enzymatic reactions vary with temperature. Now, it is shown how this temperature sensitivity can be exploited to construct oscillating reaction networks that are able to detect temperature changes with remarkable precision.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural coding of temperature with a DNA-based spiking chemical neuron 利用基于 DNA 的尖峰化学神经元对温度进行神经编码
Pub Date : 2024-08-07 DOI: 10.1038/s44286-024-00087-5
N. Lobato-Dauzier, A. Baccouche, G. Gines, T. Levi, Y. Rondelez, T. Fujii, S. H. Kim, N. Aubert-Kato, A. J. Genot
Complex organisms perceive their surroundings with sensory neurons that encode physical stimuli into spikes of electrical activities. The past decades have seen a throve of computing approaches taking inspiration from neurons, including reports of DNA-based chemical neurons that mimic artificial neural networks with chemical reactions. Yet, they lack the physical sensing and temporal coding of sensory biological neurons. Here we report a thermosensory chemical neuron based on DNA and enzymes that spikes with chemical activity when exposed to cold. Surprisingly, this chemical neuron shares deep mathematical similarities with a toy model of a cold nociceptive neuron: they follow a similar bifurcation route between rest and oscillations and avoid artefacts associated with canonical bifurcations (such as irreversibility, damping or untimely spiking). We experimentally demonstrate this robustness by encoding—digitally and analogically—thermal messages into chemical waveforms. This chemical neuron could pave the way for implementing the third generation of neural network models (spiking networks) in DNA and opens the door for associative learning. Complex organisms perceive their surroundings with sensory neurons that encode physical stimuli into spikes of electrical activities. Here a thermosensory chemical neuron based on DNA and enzymes has been reported, which spikes with chemical activity when exposed to cold.
复杂的生物体通过感觉神经元感知周围环境,这些神经元将物理刺激编码为尖峰电活动。过去几十年来,从神经元中汲取灵感的计算方法层出不穷,其中包括利用化学反应模拟人工神经网络的 DNA 化学神经元。然而,它们缺乏生物感知神经元的物理传感和时间编码。在这里,我们报告了一种基于DNA和酶的热感化学神经元,当暴露在寒冷环境中时,它的化学活性会出现尖峰。令人惊讶的是,这种化学神经元与冷痛觉神经元的玩具模型在数学上有很深的相似之处:它们在静止和振荡之间遵循相似的分岔路线,并避免了与典型分岔相关的伪现象(如不可逆、阻尼或不适时尖峰)。我们通过将数字和模拟热信息编码成化学波形,在实验中证明了这种鲁棒性。这种化学神经元可为在 DNA 中实现第三代神经网络模型(尖峰网络)铺平道路,并为联想学习打开大门。复杂生物通过感觉神经元感知周围环境,这些神经元将物理刺激编码为尖峰电活动。这里报告的是一种基于 DNA 和酶的热感化学神经元,当暴露在寒冷环境中时,这种神经元会产生尖峰化学反应。
{"title":"Neural coding of temperature with a DNA-based spiking chemical neuron","authors":"N. Lobato-Dauzier, A. Baccouche, G. Gines, T. Levi, Y. Rondelez, T. Fujii, S. H. Kim, N. Aubert-Kato, A. J. Genot","doi":"10.1038/s44286-024-00087-5","DOIUrl":"10.1038/s44286-024-00087-5","url":null,"abstract":"Complex organisms perceive their surroundings with sensory neurons that encode physical stimuli into spikes of electrical activities. The past decades have seen a throve of computing approaches taking inspiration from neurons, including reports of DNA-based chemical neurons that mimic artificial neural networks with chemical reactions. Yet, they lack the physical sensing and temporal coding of sensory biological neurons. Here we report a thermosensory chemical neuron based on DNA and enzymes that spikes with chemical activity when exposed to cold. Surprisingly, this chemical neuron shares deep mathematical similarities with a toy model of a cold nociceptive neuron: they follow a similar bifurcation route between rest and oscillations and avoid artefacts associated with canonical bifurcations (such as irreversibility, damping or untimely spiking). We experimentally demonstrate this robustness by encoding—digitally and analogically—thermal messages into chemical waveforms. This chemical neuron could pave the way for implementing the third generation of neural network models (spiking networks) in DNA and opens the door for associative learning. Complex organisms perceive their surroundings with sensory neurons that encode physical stimuli into spikes of electrical activities. Here a thermosensory chemical neuron based on DNA and enzymes has been reported, which spikes with chemical activity when exposed to cold.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44286-024-00087-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering and direct imaging of nanocube self-assembly pathways 纳米立方体自组装路径的工程设计和直接成像
Pub Date : 2024-08-06 DOI: 10.1038/s44286-024-00102-9
Yaxu Zhong, Timothy C. Moore, Tobias Dwyer, Alex Butrum-Griffith, Vincent R. Allen, Jun Chen, Yi Wang, Fanrui Cheng, Sharon C. Glotzer, Xingchen Ye
Nanoparticle self-assembly offers a scalable and versatile means to fabricate next-generation materials. The prevalence of metastable and nonequilibrium states during the assembly process makes the final structure and function directly dependent upon formation pathways. However, it remains challenging to steer the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ. Here we use liquid-cell transmission electron microscopy to image complete self-assembly processes of gold nanocubes, a model shape-anisotropic nanocolloidal system, into distinct superlattices. Theoretical analysis and molecular dynamics simulations indicate that the electrostatic screening of the medium dictates self-assembly pathways by its effects on the interactions between nanocubes. We leverage this understanding to demonstrate on-the-fly control of assembly behavior through rapid solvent exchange. Our joint experiment–simulation–theory investigation paves the way for elucidating the relationships among building block attributes, assembly pathways and superstructures in nanoscale assembly and opens new avenues for the bottom-up design of reconfigurable and adaptive metamaterials. Guiding the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ remains challenging. Here the authors combine liquid-cell transmission electron microscopy, scaling theory and molecular dynamics simulations to image and quantify self-assembly processes of gold nanocubes into distinct superlattices.
纳米粒子自组装为制造下一代材料提供了一种可扩展的多功能手段。组装过程中普遍存在的可变状态和非平衡状态使得最终结构和功能直接取决于形成途径。然而,如何在原位可视化的同时引导纳米粒子系统的组装路径走向多种超结构仍然是一项挑战。在这里,我们使用液胞透射电子显微镜对金纳米立方体(一种形状各向异性的纳米胶体系统模型)的完整自组装过程进行成像,将其组装成不同的超晶格。理论分析和分子动力学模拟表明,介质的静电筛选通过影响纳米立方体之间的相互作用来决定自组装路径。我们利用这一认识,展示了通过快速溶剂交换对组装行为的即时控制。我们的实验-模拟-理论联合研究为阐明纳米级组装中构件属性、组装路径和超结构之间的关系铺平了道路,并为自下而上地设计可重构和自适应超材料开辟了新途径。在原位可视化的同时,引导纳米粒子系统的组装路径走向多种上层结构仍然具有挑战性。在此,作者结合液胞透射电子显微镜、缩放理论和分子动力学模拟,对金纳米立方体自组装成不同超晶格的过程进行了成像和量化。
{"title":"Engineering and direct imaging of nanocube self-assembly pathways","authors":"Yaxu Zhong, Timothy C. Moore, Tobias Dwyer, Alex Butrum-Griffith, Vincent R. Allen, Jun Chen, Yi Wang, Fanrui Cheng, Sharon C. Glotzer, Xingchen Ye","doi":"10.1038/s44286-024-00102-9","DOIUrl":"10.1038/s44286-024-00102-9","url":null,"abstract":"Nanoparticle self-assembly offers a scalable and versatile means to fabricate next-generation materials. The prevalence of metastable and nonequilibrium states during the assembly process makes the final structure and function directly dependent upon formation pathways. However, it remains challenging to steer the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ. Here we use liquid-cell transmission electron microscopy to image complete self-assembly processes of gold nanocubes, a model shape-anisotropic nanocolloidal system, into distinct superlattices. Theoretical analysis and molecular dynamics simulations indicate that the electrostatic screening of the medium dictates self-assembly pathways by its effects on the interactions between nanocubes. We leverage this understanding to demonstrate on-the-fly control of assembly behavior through rapid solvent exchange. Our joint experiment–simulation–theory investigation paves the way for elucidating the relationships among building block attributes, assembly pathways and superstructures in nanoscale assembly and opens new avenues for the bottom-up design of reconfigurable and adaptive metamaterials. Guiding the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ remains challenging. Here the authors combine liquid-cell transmission electron microscopy, scaling theory and molecular dynamics simulations to image and quantify self-assembly processes of gold nanocubes into distinct superlattices.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Chemical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1