Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2024-03-21 DOI:10.1162/neco_a_01653
Seongil Im;Jae-Seung Jeong;Junseo Lee;Changhwan Shin;Jeong Ho Cho;Hyunsu Ju
{"title":"Column Row Convolutional Neural Network: Reducing Parameters for Efficient Image Processing","authors":"Seongil Im;Jae-Seung Jeong;Junseo Lee;Changhwan Shin;Jeong Ho Cho;Hyunsu Ju","doi":"10.1162/neco_a_01653","DOIUrl":null,"url":null,"abstract":"Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"36 4","pages":"744-758"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10534912/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in deep learning have achieved significant progress by increasing the number of parameters in a given model. However, this comes at the cost of computing resources, prompting researchers to explore model compression techniques that reduce the number of parameters while maintaining or even improving performance. Convolutional neural networks (CNN) have been recognized as more efficient and effective than fully connected (FC) networks. We propose a column row convolutional neural network (CRCNN) in this letter that applies 1D convolution to image data, significantly reducing the number of learning parameters and operational steps. The CRCNN uses column and row local receptive fields to perform data abstraction, concatenating each direction's feature before connecting it to an FC layer. Experimental results demonstrate that the CRCNN maintains comparable accuracy while reducing the number of parameters and compared to prior work. Moreover, the CRCNN is employed for one-class anomaly detection, demonstrating its feasibility for various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
列行卷积神经网络:减少参数,实现高效图像处理
通过增加给定模型中的参数数量,深度学习最近取得了重大进展。然而,这是以计算资源为代价的,这促使研究人员探索模型压缩技术,以减少参数数量,同时保持甚至提高性能。卷积神经网络(CNN)已被公认为比全连接(FC)网络更高效、更有效。我们在这封信中提出了一种列行卷积神经网络(CRCNN),它将一维卷积应用于图像数据,大大减少了学习参数和操作步骤的数量。CRCNN 利用列和行局部感受野进行数据抽象,在将每个方向的特征连接到 FC 层之前将其串联起来。实验结果表明,与之前的研究相比,CRCNN 在减少参数数量的同时保持了相当的准确性。此外,CRCNN 被用于单类异常检测,证明了它在各种应用中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Realizing Synthetic Active Inference Agents, Part II: Variational Message Updates Bounded Rational Decision Networks With Belief Propagation Computation With Sequences of Assemblies in a Model of the Brain Relating Human Error–Based Learning to Modern Deep RL Algorithms Selective Inference for Change Point Detection by Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1