Computation With Sequences of Assemblies in a Model of the Brain

IF 2.7 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computation Pub Date : 2024-12-12 DOI:10.1162/neco_a_01720
Max Dabagia;Christos H. Papadimitriou;Santosh S. Vempala
{"title":"Computation With Sequences of Assemblies in a Model of the Brain","authors":"Max Dabagia;Christos H. Papadimitriou;Santosh S. Vempala","doi":"10.1162/neco_a_01720","DOIUrl":null,"url":null,"abstract":"Even as machine learning exceeds human-level performance on many applications, the generality, robustness, and rapidity of the brain’s learning capabilities remain unmatched. How cognition arises from neural activity is the central open question in neuroscience, inextricable from the study of intelligence itself. A simple formal model of neural activity was proposed in Papadimitriou et al. (2020) and has been subsequently shown, through both mathematical proofs and simulations, to be capable of implementing certain simple cognitive operations via the creation and manipulation of assemblies of neurons. However, many intelligent behaviors rely on the ability to recognize, store, and manipulate temporal sequences of stimuli (planning, language, navigation, to list a few). Here we show that in the same model, sequential precedence can be captured naturally through synaptic weights and plasticity, and, as a result, a range of computations on sequences of assemblies can be carried out. In particular, repeated presentation of a sequence of stimuli leads to the memorization of the sequence through corresponding neural assemblies: upon future presentation of any stimulus in the sequence, the corresponding assembly and its subsequent ones will be activated, one after the other, until the end of the sequence. If the stimulus sequence is presented to two brain areas simultaneously, a scaffolded representation is created, resulting in more efficient memorization and recall, in agreement with cognitive experiments. Finally, we show that any finite state machine can be learned in a similar way, through the presentation of appropriate patterns of sequences. Through an extension of this mechanism, the model can be shown to be capable of universal computation. Taken together, these results provide a concrete hypothesis for the basis of the brain’s remarkable abilities to compute and learn, with sequences playing a vital role.","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":"37 1","pages":"193-233"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10810347/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Even as machine learning exceeds human-level performance on many applications, the generality, robustness, and rapidity of the brain’s learning capabilities remain unmatched. How cognition arises from neural activity is the central open question in neuroscience, inextricable from the study of intelligence itself. A simple formal model of neural activity was proposed in Papadimitriou et al. (2020) and has been subsequently shown, through both mathematical proofs and simulations, to be capable of implementing certain simple cognitive operations via the creation and manipulation of assemblies of neurons. However, many intelligent behaviors rely on the ability to recognize, store, and manipulate temporal sequences of stimuli (planning, language, navigation, to list a few). Here we show that in the same model, sequential precedence can be captured naturally through synaptic weights and plasticity, and, as a result, a range of computations on sequences of assemblies can be carried out. In particular, repeated presentation of a sequence of stimuli leads to the memorization of the sequence through corresponding neural assemblies: upon future presentation of any stimulus in the sequence, the corresponding assembly and its subsequent ones will be activated, one after the other, until the end of the sequence. If the stimulus sequence is presented to two brain areas simultaneously, a scaffolded representation is created, resulting in more efficient memorization and recall, in agreement with cognitive experiments. Finally, we show that any finite state machine can be learned in a similar way, through the presentation of appropriate patterns of sequences. Through an extension of this mechanism, the model can be shown to be capable of universal computation. Taken together, these results provide a concrete hypothesis for the basis of the brain’s remarkable abilities to compute and learn, with sequences playing a vital role.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用大脑模型中的集合序列进行计算
即使机器学习在许多应用领域的表现已超过人类水平,大脑学习能力的通用性、鲁棒性和快速性仍然无与伦比。认知是如何从神经活动中产生的,这是神经科学的核心未决问题,与智能本身的研究密不可分。帕帕季米特里乌(Papadimitriou)等人(2020 年)提出了一个简单的神经活动形式模型,随后通过数学证明和模拟证明,该模型能够通过创建和操纵神经元集合实现某些简单的认知操作。然而,许多智能行为都依赖于识别、存储和操纵刺激的时间序列的能力(如规划、语言、导航等)。在这里,我们展示了在同一个模型中,可以通过突触权重和可塑性自然地捕捉顺序优先性,从而可以对集合序列进行一系列计算。特别是,重复呈现刺激序列会导致通过相应的神经集合记忆序列:当序列中的任何刺激在未来呈现时,相应的神经集合及其后续的神经集合都会被激活,一个接一个,直到序列结束。如果刺激序列同时呈现在两个脑区,就会形成一个支架式表征,从而提高记忆和回忆的效率,这与认知实验的结果是一致的。最后,我们证明,通过呈现适当的序列模式,任何有限状态机都能以类似的方式被学习。通过对这一机制的扩展,可以证明该模型能够进行通用计算。综上所述,这些结果为大脑非凡的计算和学习能力的基础提供了一个具体的假设,而序列在其中扮演着至关重要的角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Computation
Neural Computation 工程技术-计算机:人工智能
CiteScore
6.30
自引率
3.40%
发文量
83
审稿时长
3.0 months
期刊介绍: Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.
期刊最新文献
Realizing Synthetic Active Inference Agents, Part II: Variational Message Updates Bounded Rational Decision Networks With Belief Propagation Computation With Sequences of Assemblies in a Model of the Brain Relating Human Error–Based Learning to Modern Deep RL Algorithms Selective Inference for Change Point Detection by Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1