Vivian Wu , Malgorzata Swider , Alexander Sumaroka , Valerie L. Dufour , Joseph E. Vance , Tomas S. Aleman , Gustavo D. Aguirre , William A. Beltran , Artur V. Cideciyan
{"title":"Retinal response to light exposure in BEST1-mutant dogs evaluated with ultra-high resolution OCT","authors":"Vivian Wu , Malgorzata Swider , Alexander Sumaroka , Valerie L. Dufour , Joseph E. Vance , Tomas S. Aleman , Gustavo D. Aguirre , William A. Beltran , Artur V. Cideciyan","doi":"10.1016/j.visres.2024.108379","DOIUrl":null,"url":null,"abstract":"<div><p>Mutations in <em>BEST1</em> cause an autosomal recessive disease in dogs where the earliest changes localize to the photoreceptor-RPE interface and show a retina-wide micro-detachment that is modulated by light exposure. The purpose of this study was to define the spatial and temporal details of the outer retina and its response to light with ultra-high resolution OCT across a range of ages and with different <em>BEST1</em> mutations. Three retinal regions were selected in each eye: near the fovea-like area, near the optic nerve, both in the tapetal area, and inferior to the optic nerve in the non-tapetal area. The OS+ slab thickness was defined between the peak near the junction of inner and outer segments (IS/OS) and the transition between basal RPE, Bruch membrane, choriocapillaris and proximal tapetum (RPE/T). In wildtype (WT) dogs, two tapetal regions showed additional hyperscattering OCT peaks within the OS+ slab likely representing cone and rod outer segment tips (COST and ROST). The inferior non-tapetal region of WT dogs had only one of these peaks, likely ROST. In dogs with <em>BEST1</em> mutations, all three locations showed a single peak, likely suggesting optical silence of COST. Light-dependent expansion of the micro-detachment by about 10 um was detectable in both tapetal and non-tapetal retina across all ages and <em>BEST1</em> mutations.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698924000233","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mutations in BEST1 cause an autosomal recessive disease in dogs where the earliest changes localize to the photoreceptor-RPE interface and show a retina-wide micro-detachment that is modulated by light exposure. The purpose of this study was to define the spatial and temporal details of the outer retina and its response to light with ultra-high resolution OCT across a range of ages and with different BEST1 mutations. Three retinal regions were selected in each eye: near the fovea-like area, near the optic nerve, both in the tapetal area, and inferior to the optic nerve in the non-tapetal area. The OS+ slab thickness was defined between the peak near the junction of inner and outer segments (IS/OS) and the transition between basal RPE, Bruch membrane, choriocapillaris and proximal tapetum (RPE/T). In wildtype (WT) dogs, two tapetal regions showed additional hyperscattering OCT peaks within the OS+ slab likely representing cone and rod outer segment tips (COST and ROST). The inferior non-tapetal region of WT dogs had only one of these peaks, likely ROST. In dogs with BEST1 mutations, all three locations showed a single peak, likely suggesting optical silence of COST. Light-dependent expansion of the micro-detachment by about 10 um was detectable in both tapetal and non-tapetal retina across all ages and BEST1 mutations.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.