Sola Woo;Khandker Akif Aabrar;Suman Datta;Shimeng Yu
{"title":"Analyzing Total-Ionizing-Dose Induced Memory Window Degradation in Ferroelectric FinFET","authors":"Sola Woo;Khandker Akif Aabrar;Suman Datta;Shimeng Yu","doi":"10.1109/TDMR.2023.3344710","DOIUrl":null,"url":null,"abstract":"The total-ionizing-dose (TID) effect of ferroelectric FinFET structure (Fe-FinFET) is analyzed under various gamma ray irradiation conditions. An TCAD model is developed to understand the physical mechanism of TID effect, and the simulation results are calibrated with the experimental data. We show that the TID-induced memory window degradation is attributed to two types of traps being generated within the ferroelectric layer and at the interfacial layer/silicon interface. Furthermore, the impact of the scaling down the Fe-FinFET structure is investigated with various gate lengths and fin widths. The projection shows that the scaled Fe-FinFET still could maintain a 0.4 V memory window under the highest radiation dose (10 Mrad). The sufficient memory window under the highest irradiation condition confirms the survivability of the Fe-FinFETs and makes Fe-FinFET a promising candidate for data storage as radiation-hard non-volatile memory in harsh ionizing environment.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"24 1","pages":"84-88"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10366869/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The total-ionizing-dose (TID) effect of ferroelectric FinFET structure (Fe-FinFET) is analyzed under various gamma ray irradiation conditions. An TCAD model is developed to understand the physical mechanism of TID effect, and the simulation results are calibrated with the experimental data. We show that the TID-induced memory window degradation is attributed to two types of traps being generated within the ferroelectric layer and at the interfacial layer/silicon interface. Furthermore, the impact of the scaling down the Fe-FinFET structure is investigated with various gate lengths and fin widths. The projection shows that the scaled Fe-FinFET still could maintain a 0.4 V memory window under the highest radiation dose (10 Mrad). The sufficient memory window under the highest irradiation condition confirms the survivability of the Fe-FinFETs and makes Fe-FinFET a promising candidate for data storage as radiation-hard non-volatile memory in harsh ionizing environment.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.