Generalized Autoregressive Conditional Betas: A New Multivariate Score-Driven Filter

Szabolcs Blazsek, August Jörding, Simran Rai
{"title":"Generalized Autoregressive Conditional Betas: A New Multivariate Score-Driven Filter","authors":"Szabolcs Blazsek, August Jörding, Simran Rai","doi":"10.1515/snde-2023-0019","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the recent Gaussian autoregressive conditional beta (Gaussian-ACB) model from the literature on score-driven models. In the new asset pricing model, named the <jats:italic>t</jats:italic> generalized ACB (<jats:italic>t</jats:italic>-GACB) model, a multivariate score-driven filter for the <jats:italic>t</jats:italic>-distribution drives dynamic interaction effects among the beta coefficients. We present the econometric formulation and statistical inference for the <jats:italic>t</jats:italic>-GACB model, which we apply to 15 stocks from the United States (US) from 1999 to 2022. In our empirical application, we use the three Fama–French factors as asset pricing factors, and we also use the Volatility Index, TED Spread, and ICE BofA US High Yield Index Option-Adjusted Spread as exogenous explanatory variables that influence the beta coefficients. We compare the statistical and realized tracking error performances of the Gaussian-ACB, <jats:italic>t</jats:italic>-ACB, and <jats:italic>t</jats:italic>-GACB models, and we find that the <jats:italic>t</jats:italic>-GACB model improves the Gaussian-ACB model.","PeriodicalId":501448,"journal":{"name":"Studies in Nonlinear Dynamics & Econometrics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics & Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/snde-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we extend the recent Gaussian autoregressive conditional beta (Gaussian-ACB) model from the literature on score-driven models. In the new asset pricing model, named the t generalized ACB (t-GACB) model, a multivariate score-driven filter for the t-distribution drives dynamic interaction effects among the beta coefficients. We present the econometric formulation and statistical inference for the t-GACB model, which we apply to 15 stocks from the United States (US) from 1999 to 2022. In our empirical application, we use the three Fama–French factors as asset pricing factors, and we also use the Volatility Index, TED Spread, and ICE BofA US High Yield Index Option-Adjusted Spread as exogenous explanatory variables that influence the beta coefficients. We compare the statistical and realized tracking error performances of the Gaussian-ACB, t-ACB, and t-GACB models, and we find that the t-GACB model improves the Gaussian-ACB model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广义自回归条件 Betas:一种新的多元分数驱动过滤器
在本文中,我们扩展了得分驱动模型文献中最新的高斯自回归条件贝塔系数(Gaussian-ACB)模型。在这个被命名为 t 广义 ACB(t-GACB)模型的新资产定价模型中,t 分布的多元分数驱动滤波器驱动了贝塔系数之间的动态交互效应。我们介绍了 t-GACB 模型的计量经济学公式和统计推断,并将其应用于 1999 年至 2022 年期间美国的 15 只股票。在实证应用中,我们使用三个法马-法式因子作为资产定价因子,同时使用波动率指数、TED 利差和 ICE BofA 美国高收益指数期权调整利差作为影响贝塔系数的外生解释变量。我们比较了高斯-ACB、t-ACB 和 t-GACB 模型的统计和实现跟踪误差表现,发现 t-GACB 模型改进了高斯-ACB 模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotic Properties of ReLU FFN Sieve Estimators Multivariate Stochastic Volatility with Co-Heteroscedasticity Heterogeneity, Jumps and Co-Movements in Transmission of Volatility Spillovers Among Cryptocurrencies Heterogeneous Volatility Information Content for the Realized GARCH Modeling and Forecasting Volatility Determination of the Number of Breaks in Heterogeneous Panel Data Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1