Rachel A. Margraf, James P. MacArthur, Gabriel Marcus, Heinz-Dieter Nuhn, Alberto Lutman, Aliaksei Halavanau, Zhen Zhang, Zhirong Huang
{"title":"Microbunch rotation in an x-ray free-electron laser using a first-order achromatic bend","authors":"Rachel A. Margraf, James P. MacArthur, Gabriel Marcus, Heinz-Dieter Nuhn, Alberto Lutman, Aliaksei Halavanau, Zhen Zhang, Zhirong Huang","doi":"10.1103/physrevaccelbeams.27.030702","DOIUrl":null,"url":null,"abstract":"Electrons in an x-ray free electron laser (XFEL) develop periodic density fluctuations, known as microbunches, which enable the exponential gain of x-ray power in an XFEL. When an electron beam microbunched at a hard x-ray wavelength is kicked, microbunches are often washed out due to the dispersion and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>R</mi><mn>56</mn></msub></math> of the bend. An achromatic (dispersion-free) bend with a small <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>R</mi><mn>56</mn></msub></math>, however, can preserve microbunches, which rotate to follow the new trajectory of the electron bunch. Rotated microbunches can subsequently interact in a repointed undulator to produce a new beam of off-axis x rays. In this work, we demonstrate hard x-ray multiplexing in the Linac Coherent Light Source hard x-ray undulator line using microbunch rotation through a <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>10</mn><mtext> </mtext><mtext> </mtext><mi mathvariant=\"normal\">μ</mi><mi>rad</mi></mrow></math> first-order-achromatic bend created by transversely offsetting quadrupole magnets in the FODO lattice. Quadrupole offsets are determined analytically from beam-matrix theory. We also discuss the application of microbunch rotation to out-coupling a cavity-based XFEL.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"6 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.030702","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Electrons in an x-ray free electron laser (XFEL) develop periodic density fluctuations, known as microbunches, which enable the exponential gain of x-ray power in an XFEL. When an electron beam microbunched at a hard x-ray wavelength is kicked, microbunches are often washed out due to the dispersion and of the bend. An achromatic (dispersion-free) bend with a small , however, can preserve microbunches, which rotate to follow the new trajectory of the electron bunch. Rotated microbunches can subsequently interact in a repointed undulator to produce a new beam of off-axis x rays. In this work, we demonstrate hard x-ray multiplexing in the Linac Coherent Light Source hard x-ray undulator line using microbunch rotation through a first-order-achromatic bend created by transversely offsetting quadrupole magnets in the FODO lattice. Quadrupole offsets are determined analytically from beam-matrix theory. We also discuss the application of microbunch rotation to out-coupling a cavity-based XFEL.
X 射线自由电子激光器(XFEL)中的电子会产生周期性的密度波动,即所谓的微束,这使得 XFEL 中的 X 射线功率呈指数增长。当以硬 X 射线波长为微束的电子束被踢出时,由于弯曲的色散和 R56,微束通常会被冲掉。然而,R56 较小的消色散(无色散)弯管可以保留微束,微束会跟随电子束的新轨迹旋转。旋转的微束随后可以在重新定点的起伏器中相互作用,产生新的离轴 X 射线束。在这项工作中,我们利用微束旋转通过由 FODO 晶格中横向偏移的四极磁铁产生的 10 μrad 一阶半色弯曲,演示了在里纳克相干光源硬 X 射线起爆线中的硬 X 射线多路复用。四极偏移是通过波束矩阵理论分析确定的。我们还讨论了微束旋转在腔基 XFEL 外耦合中的应用。
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.