B. Dhital, Y. S. Derbenev, A. Hutton, H. Zhang, G. A. Krafft, Y. Zhang, F. Lin, V. S. Morozov
{"title":"Dual-energy electron storage ring","authors":"B. Dhital, Y. S. Derbenev, A. Hutton, H. Zhang, G. A. Krafft, Y. Zhang, F. Lin, V. S. Morozov","doi":"10.1103/physrevaccelbeams.27.090101","DOIUrl":null,"url":null,"abstract":"A dual-energy electron storage ring is a novel concept initially proposed to cool hadron beams at high energies. The design consists of two closed rings operating at significantly different energies: the low-energy ring and the high-energy ring. These two rings are connected by an energy recovery linac (ERL) that provides the necessary energy difference. The ERL features superconducting radio-frequency (SRF) cavities that first accelerate the beam from the low energy <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>L</mi></msub></math> to the high energy <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>H</mi></msub></math> and then decelerate the beam from <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>H</mi></msub></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>E</mi><mi>L</mi></msub></math> in the next pass. The different SRF cavities in the ERL section can be adjusted based on the applications. In this paper, we present a possible layout of a dual-energy electron storage ring. The preliminary optics of the ring is designed to optimize chromaticity correction, dynamic aperture, momentum aperture, beam lifetime, radiation damping, and intrabeam scattering effects. The primary focus of this paper is on the stability conditions and beam dynamics studies associated with this storage ring.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"77 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.090101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
A dual-energy electron storage ring is a novel concept initially proposed to cool hadron beams at high energies. The design consists of two closed rings operating at significantly different energies: the low-energy ring and the high-energy ring. These two rings are connected by an energy recovery linac (ERL) that provides the necessary energy difference. The ERL features superconducting radio-frequency (SRF) cavities that first accelerate the beam from the low energy to the high energy and then decelerate the beam from to in the next pass. The different SRF cavities in the ERL section can be adjusted based on the applications. In this paper, we present a possible layout of a dual-energy electron storage ring. The preliminary optics of the ring is designed to optimize chromaticity correction, dynamic aperture, momentum aperture, beam lifetime, radiation damping, and intrabeam scattering effects. The primary focus of this paper is on the stability conditions and beam dynamics studies associated with this storage ring.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.