{"title":"Spatial Orbital Gyrocompass. Questions of Theory and Application","authors":"I. N. Abezyaev","doi":"10.1134/s0010952523700740","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The developed spatial (3D) orbital gyrocompass allows performing all the necessary functions of angular orientation of a spacecraft relative to the orbital coordinate system. In this regard, it is no different from the astronavigation system (ANS), except for the use of different types of external information sensors. In the first case, it is the Earth orientation device; in the second case, it is the star sensor. Each system has its advantages and disadvantages. The advantage of the ANS is higher orientation accuracy. The undeniable advantage of the 3D gyrocompass is the ability to control the orientation of the spacecraft for an extended period without using ballistic data. The sufficiently high functionality of the 3D gyrocompass makes the orientation system built on its basis quite competitive with astronavigation-based orientation systems. Thus, the task of studying the properties and improving the accuracy characteristics of the device becomes relevant.</p>","PeriodicalId":56319,"journal":{"name":"Cosmic Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cosmic Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0010952523700740","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The developed spatial (3D) orbital gyrocompass allows performing all the necessary functions of angular orientation of a spacecraft relative to the orbital coordinate system. In this regard, it is no different from the astronavigation system (ANS), except for the use of different types of external information sensors. In the first case, it is the Earth orientation device; in the second case, it is the star sensor. Each system has its advantages and disadvantages. The advantage of the ANS is higher orientation accuracy. The undeniable advantage of the 3D gyrocompass is the ability to control the orientation of the spacecraft for an extended period without using ballistic data. The sufficiently high functionality of the 3D gyrocompass makes the orientation system built on its basis quite competitive with astronavigation-based orientation systems. Thus, the task of studying the properties and improving the accuracy characteristics of the device becomes relevant.
期刊介绍:
Cosmic Research publishes scientific papers covering all subjects of space science and technology, including the following: ballistics, flight dynamics of the Earth’s artificial satellites and automatic interplanetary stations; problems of transatmospheric descent; design and structure of spacecraft and scientific research instrumentation; life support systems and radiation safety of manned spacecrafts; exploration of the Earth from Space; exploration of near space; exploration of the Sun, planets, secondary planets, and interplanetary medium; exploration of stars, nebulae, interstellar medium, galaxies, and quasars from spacecraft; and various astrophysical problems related to space exploration. A chronicle of scientific events and other notices concerning the main topics of the journal are also presented.