Sheraz Aslam, Michalis P. Michaelides, Herodotos Herodotou
{"title":"A survey on computational intelligence approaches for intelligent marine terminal operations","authors":"Sheraz Aslam, Michalis P. Michaelides, Herodotos Herodotou","doi":"10.1049/itr2.12469","DOIUrl":null,"url":null,"abstract":"<p>Marine container terminals (MCTs) play a crucial role in intelligent maritime transportation (IMT) systems. Since the number of containers handled by MCTs has been increasing over the years, there is a need for developing effective and efficient approaches to enhance the productivity of IMT systems. The berth allocation problem (BAP) and the quay crane allocation problem (QCAP) are two well-known optimization problems in seaside operations of MCTs. The primary aim is to minimize the vessel service cost and maximize the performance of MCTs by optimally allocating berths and quay cranes to arriving vessels subject to practical constraints. This study presents an in-depth review of computational intelligence (CI) approaches developed to enhance the performance of MCTs. First, an introduction to MCTs and their key operations is presented, primarily focusing on seaside operations. A detailed overview of recent CI methods and solutions developed for the BAP is presented, considering various berthing layouts. Subsequently, a review of solutions related to the QCAP is presented. The datasets used in the current literature are also discussed, enabling future researchers to identify appropriate datasets to use in their work. Eventually, a detailed discussion is presented to highlight key opportunities along with foreseeable future challenges in the area.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12469","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12469","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Marine container terminals (MCTs) play a crucial role in intelligent maritime transportation (IMT) systems. Since the number of containers handled by MCTs has been increasing over the years, there is a need for developing effective and efficient approaches to enhance the productivity of IMT systems. The berth allocation problem (BAP) and the quay crane allocation problem (QCAP) are two well-known optimization problems in seaside operations of MCTs. The primary aim is to minimize the vessel service cost and maximize the performance of MCTs by optimally allocating berths and quay cranes to arriving vessels subject to practical constraints. This study presents an in-depth review of computational intelligence (CI) approaches developed to enhance the performance of MCTs. First, an introduction to MCTs and their key operations is presented, primarily focusing on seaside operations. A detailed overview of recent CI methods and solutions developed for the BAP is presented, considering various berthing layouts. Subsequently, a review of solutions related to the QCAP is presented. The datasets used in the current literature are also discussed, enabling future researchers to identify appropriate datasets to use in their work. Eventually, a detailed discussion is presented to highlight key opportunities along with foreseeable future challenges in the area.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf