{"title":"Time-Series Forecasting of a Typical PWR Undergoing Large Break LOCA","authors":"Michal Kaminski, Aya Diab","doi":"10.1155/2024/6162232","DOIUrl":null,"url":null,"abstract":"In this work, a machine learning (ML) metamodel is developed for the time-series forecasting of a typical nuclear power plant response undergoing a loss of coolant accident (LOCA). The plant model of choice is based on the APR1400 nuclear reactor. The key systems and components of APR1400 relevant to the investigated scenario are modelled using the thermal-hydraulic code, RELAP5/MOD3.4, following the description published in the design control document. The model is tested under a spectrum of initial and boundary conditions via propagation of key uncertain parameters (UPs) which are derived from the phenomena identification and ranking table (PIRT). This is achieved by loosely coupling RELAP5/MOD3.4 with the statistical tool, Dakota. The most probable nuclear power plant (NPP) response was calculated using the best estimate plus uncertainty (BEPU) approach. Next, the database generated from the NPP system response was used as an input for the ML model. The NPP system response was represented by peak cladding temperature (PCT), safety injection system (SIT), mass flow rate, reactor power, and primary system pressure. In this research, two regression models were tested with reasonably good performance, namely, the gated recurrent unit (GRU) and the long short-term memory (LSTM).","PeriodicalId":21629,"journal":{"name":"Science and Technology of Nuclear Installations","volume":"99 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Nuclear Installations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6162232","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a machine learning (ML) metamodel is developed for the time-series forecasting of a typical nuclear power plant response undergoing a loss of coolant accident (LOCA). The plant model of choice is based on the APR1400 nuclear reactor. The key systems and components of APR1400 relevant to the investigated scenario are modelled using the thermal-hydraulic code, RELAP5/MOD3.4, following the description published in the design control document. The model is tested under a spectrum of initial and boundary conditions via propagation of key uncertain parameters (UPs) which are derived from the phenomena identification and ranking table (PIRT). This is achieved by loosely coupling RELAP5/MOD3.4 with the statistical tool, Dakota. The most probable nuclear power plant (NPP) response was calculated using the best estimate plus uncertainty (BEPU) approach. Next, the database generated from the NPP system response was used as an input for the ML model. The NPP system response was represented by peak cladding temperature (PCT), safety injection system (SIT), mass flow rate, reactor power, and primary system pressure. In this research, two regression models were tested with reasonably good performance, namely, the gated recurrent unit (GRU) and the long short-term memory (LSTM).
期刊介绍:
Science and Technology of Nuclear Installations is an international scientific journal that aims to make available knowledge on issues related to the nuclear industry and to promote development in the area of nuclear sciences and technologies. The endeavor associated with the establishment and the growth of the journal is expected to lend support to the renaissance of nuclear technology in the world and especially in those countries where nuclear programs have not yet been developed.