Unsupervised Multimodal Machine Translation for Low-Resource Distant Language Pairs

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Asian and Low-Resource Language Information Processing Pub Date : 2024-03-09 DOI:10.1145/3652161
Turghun Tayir, Lin Li
{"title":"Unsupervised Multimodal Machine Translation for Low-Resource Distant Language Pairs","authors":"Turghun Tayir, Lin Li","doi":"10.1145/3652161","DOIUrl":null,"url":null,"abstract":"<p>Unsupervised machine translation (UMT) has recently attracted more attention from researchers, enabling models to translate when languages lack parallel corpora. However, the current works mainly consider close language pairs (e.g., English-German and English-French), and the effectiveness of visual content for distant language pairs has yet to be investigated. This paper proposes a unsupervised multimodal machine translation (UMMT) model for low-resource distant language pairs. Specifically, we first employ adequate measures such as transliteration and re-ordering to bring distant language pairs closer together. We then use visual content to extend masked language modeling (MLM) and generate visual masked language modeling (VMLM) for UMT. Finally, empirical experiments are conducted on our distant language pair dataset and the public Multi30k dataset. Experimental results demonstrate the superior performance of our model, with BLEU score improvements of 2.5 and 2.6 on translation for distant language pairs English-Uyghur and Chinese-Uyghur. Moreover, our model also brings remarkable results for close language pairs, improving 2.3 BLEU compared with the existing models in English-German.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3652161","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised machine translation (UMT) has recently attracted more attention from researchers, enabling models to translate when languages lack parallel corpora. However, the current works mainly consider close language pairs (e.g., English-German and English-French), and the effectiveness of visual content for distant language pairs has yet to be investigated. This paper proposes a unsupervised multimodal machine translation (UMMT) model for low-resource distant language pairs. Specifically, we first employ adequate measures such as transliteration and re-ordering to bring distant language pairs closer together. We then use visual content to extend masked language modeling (MLM) and generate visual masked language modeling (VMLM) for UMT. Finally, empirical experiments are conducted on our distant language pair dataset and the public Multi30k dataset. Experimental results demonstrate the superior performance of our model, with BLEU score improvements of 2.5 and 2.6 on translation for distant language pairs English-Uyghur and Chinese-Uyghur. Moreover, our model also brings remarkable results for close language pairs, improving 2.3 BLEU compared with the existing models in English-German.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对低资源远距离语言对的无监督多模态机器翻译
无监督机器翻译(UMT)最近吸引了更多研究人员的关注,它使模型能够在语言缺乏平行语料库的情况下进行翻译。然而,目前的研究主要考虑的是近距离语言对(如英德和英法),对于远距离语言对的视觉内容的有效性还有待研究。本文提出了一种针对低资源远距离语言对的无监督多模态机器翻译(UMMT)模型。具体来说,我们首先采用音译和重新排序等适当的措施来拉近远距离语言对之间的距离。然后,我们利用视觉内容来扩展遮蔽语言建模(MLM),并为 UMT 生成视觉遮蔽语言建模(VMLM)。最后,我们在我们的远距离语言对数据集和公开的 Multi30k 数据集上进行了实证实验。实验结果表明,我们的模型性能优越,在翻译英语-维吾尔语和汉语-维吾尔语远距离语言对时,BLEU 分数分别提高了 2.5 和 2.6。此外,我们的模型还为近距离语言对带来了显著效果,与现有的英德翻译模型相比,BLEU 提高了 2.3 分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.60
自引率
15.00%
发文量
241
期刊介绍: The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to: -Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc. -Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc. -Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition. -Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc. -Machine Translation involving Asian or low-resource languages. -Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc. -Information Extraction and Filtering: including automatic abstraction, user profiling, etc. -Speech processing: including text-to-speech synthesis and automatic speech recognition. -Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc. -Cross-lingual information processing involving Asian or low-resource languages. -Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.
期刊最新文献
Learning and Vision-based approach for Human fall detection and classification in naturally occurring scenes using video data A DENSE SPATIAL NETWORK MODEL FOR EMOTION RECOGNITION USING LEARNING APPROACHES CNN-Based Models for Emotion and Sentiment Analysis Using Speech Data TRGCN: A Prediction Model for Information Diffusion Based on Transformer and Relational Graph Convolutional Network Adaptive Semantic Information Extraction of Tibetan Opera Mask with Recall Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1