Huan Rong, Zhongfeng Chen, Zhenyu Lu, Fan Xu, Victor S. Sheng
{"title":"Multization: Multi-Modal Summarization Enhanced by Multi-Contextually Relevant and Irrelevant Attention Alignment","authors":"Huan Rong, Zhongfeng Chen, Zhenyu Lu, Fan Xu, Victor S. Sheng","doi":"10.1145/3651983","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the task of Multi-Modal Summarization with Multi-Modal Output for China JD.COM e-commerce product description containing both source text and source images. In the context learning of multi-modal (text and image) input, there exists a semantic gap between text and image, especially in the cross-modal semantics of text and image. As a result, capturing shared cross-modal semantics earlier becomes crucial for multi-modal summarization. On the other hand, when generating the multi-modal summarization, based on the different contributions of input text and images, the relevance and irrelevance of multi-modal contexts to the target summary should be considered, so as to optimize the process of learning cross-modal context to guide the summary generation process and to emphasize the significant semantics within each modality. To address the aforementioned challenges, Multization has been proposed to enhance multi-modal semantic information by multi-contextually relevant and irrelevant attention alignment. Specifically, a Semantic Alignment Enhancement mechanism is employed to capture shared semantics between different modalities (text and image), so as to enhance the importance of crucial multi-modal information in the encoding stage. Additionally, the IR-Relevant Multi-Context Learning mechanism is utilized to observe the summary generation process from both relevant and irrelevant perspectives, so as to form a multi-modal context that incorporates both text and image semantic information. The experimental results in the China JD.COM e-commerce dataset demonstrate that the proposed Multization method effectively captures the shared semantics between the input source text and source images, and highlights essential semantics. It also successfully generates the multi-modal summary (including image and text) that comprehensively considers the semantics information of both text and image.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3651983","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the task of Multi-Modal Summarization with Multi-Modal Output for China JD.COM e-commerce product description containing both source text and source images. In the context learning of multi-modal (text and image) input, there exists a semantic gap between text and image, especially in the cross-modal semantics of text and image. As a result, capturing shared cross-modal semantics earlier becomes crucial for multi-modal summarization. On the other hand, when generating the multi-modal summarization, based on the different contributions of input text and images, the relevance and irrelevance of multi-modal contexts to the target summary should be considered, so as to optimize the process of learning cross-modal context to guide the summary generation process and to emphasize the significant semantics within each modality. To address the aforementioned challenges, Multization has been proposed to enhance multi-modal semantic information by multi-contextually relevant and irrelevant attention alignment. Specifically, a Semantic Alignment Enhancement mechanism is employed to capture shared semantics between different modalities (text and image), so as to enhance the importance of crucial multi-modal information in the encoding stage. Additionally, the IR-Relevant Multi-Context Learning mechanism is utilized to observe the summary generation process from both relevant and irrelevant perspectives, so as to form a multi-modal context that incorporates both text and image semantic information. The experimental results in the China JD.COM e-commerce dataset demonstrate that the proposed Multization method effectively captures the shared semantics between the input source text and source images, and highlights essential semantics. It also successfully generates the multi-modal summary (including image and text) that comprehensively considers the semantics information of both text and image.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.