Exogenous Application of Plant Growth Regulators Improves Economic Returns, Grain Yield and Quality Attributes of Late-Sown Wheat under Saline Conditions
{"title":"Exogenous Application of Plant Growth Regulators Improves Economic Returns, Grain Yield and Quality Attributes of Late-Sown Wheat under Saline Conditions","authors":"","doi":"10.1007/s42106-024-00285-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Studies on the wheat response under late sowing (LS) and salinity stress (SS) are available, however, in rice-wheat and cotton-wheat cropping systems, wheat planting is often delayed resulting in co-occurrence of LS and SS in salt affected soils. This two-year field study was conducted to evaluate the influence of foliar application of plant growth regulators (PGRs) [thiourea (TU), salicylic acid (SA) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>); water and no application were taken as control] on the productivity, grain quality and economic returns of timely-sown (TS) and LS wheat under normal (NC) and natural saline conditions (SS; EC 11.27 dS m<sup>− 1</sup>). Delay in sowing and planting in naturally saline soils caused a significant decrease in plant growth, grain yield, grain quality and net economic returns during both years of study. Late planting and SS caused a significant reduction in grain yield reduction by 40.58% and 34.72% (LS) and 40.66% and 42.89% (SS) compared with respective controls during 2021 and 2022, respectively. However, the influence of co-occurrence of LS and SS was more devastating than the individual stress causing 62.17% and 60.18% reduction in grain yield than the respective control during 2021 and 2022, respectively. However, the application of all PGRs improved the grain yield, grain quality and economic turnover under SS and LS stress. The order of improvement in grain yield by the application of PGRs treatments was TU > SA > H<sub>2</sub>O<sub>2</sub>. In conclusion, the application of different plant growth regulators improved economic returns, grain yield and quality attributes of late-sown wheat under saline conditions. In this regard, TU application was the most effective.</p>","PeriodicalId":54947,"journal":{"name":"International Journal of Plant Production","volume":"22 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Production","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42106-024-00285-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Studies on the wheat response under late sowing (LS) and salinity stress (SS) are available, however, in rice-wheat and cotton-wheat cropping systems, wheat planting is often delayed resulting in co-occurrence of LS and SS in salt affected soils. This two-year field study was conducted to evaluate the influence of foliar application of plant growth regulators (PGRs) [thiourea (TU), salicylic acid (SA) and hydrogen peroxide (H2O2); water and no application were taken as control] on the productivity, grain quality and economic returns of timely-sown (TS) and LS wheat under normal (NC) and natural saline conditions (SS; EC 11.27 dS m− 1). Delay in sowing and planting in naturally saline soils caused a significant decrease in plant growth, grain yield, grain quality and net economic returns during both years of study. Late planting and SS caused a significant reduction in grain yield reduction by 40.58% and 34.72% (LS) and 40.66% and 42.89% (SS) compared with respective controls during 2021 and 2022, respectively. However, the influence of co-occurrence of LS and SS was more devastating than the individual stress causing 62.17% and 60.18% reduction in grain yield than the respective control during 2021 and 2022, respectively. However, the application of all PGRs improved the grain yield, grain quality and economic turnover under SS and LS stress. The order of improvement in grain yield by the application of PGRs treatments was TU > SA > H2O2. In conclusion, the application of different plant growth regulators improved economic returns, grain yield and quality attributes of late-sown wheat under saline conditions. In this regard, TU application was the most effective.
期刊介绍:
IJPP publishes original research papers and review papers related to physiology, ecology and production of field crops and forages at field, farm and landscape level. Preferred topics are: (1) yield gap in cropping systems: estimation, causes and closing measures, (2) ecological intensification of plant production, (3) improvement of water and nutrients management in plant production systems, (4) environmental impact of plant production, (5) climate change and plant production, and (6) responses of plant communities to extreme weather conditions.
Please note that IJPP does not publish papers with a background in genetics and plant breeding, plant molecular biology, plant biotechnology, as well as soil science, meteorology, product process and post-harvest management unless they are strongly related to plant production under field conditions.
Papers based on limited data or of local importance, and results from routine experiments will not normally be considered for publication. Field experiments should include at least two years and/or two environments. Papers on plants other than field crops and forages, and papers based on controlled-environment experiments will not be considered.