Pioneering Fast and Safe Low-k Silicon Dioxide Synthesis for Modern Integrated Circuits

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Semiconductor Manufacturing Pub Date : 2024-03-07 DOI:10.1109/TSM.2024.3374067
Yu-Ting Chow;Shou-Yen Chao;Pei-Cheng Jiang;Chung-Tzu Chang;Mei-Yuan Zheng;Mu-Chun Wang;Cheng-Hsun-Tony Chang;Chii-Ruey Lin;Chia-Fu Chen;Kuo-Wei Liu
{"title":"Pioneering Fast and Safe Low-k Silicon Dioxide Synthesis for Modern Integrated Circuits","authors":"Yu-Ting Chow;Shou-Yen Chao;Pei-Cheng Jiang;Chung-Tzu Chang;Mei-Yuan Zheng;Mu-Chun Wang;Cheng-Hsun-Tony Chang;Chii-Ruey Lin;Chia-Fu Chen;Kuo-Wei Liu","doi":"10.1109/TSM.2024.3374067","DOIUrl":null,"url":null,"abstract":"With the advent of the highly developed era of 5G, AI, and IoT, the latest generation of ICs is designed with smaller-sized FETs, lower time delays, and reduced power consumption. To address the challenges posed by these advancements, materials with a lower k value than silicon dioxide (low-k, <4.0) are being developed to reduce resistance-capacitance (RC) time delays and power consumption. While low-k materials are still emerging, various material companies continue to introduce innovative low-k products, such as SiLK, Fox, Coral, and Aurora from different companies. Simultaneously, considering proprietary business interests, the processes and materials associated with these products have not been clearly presented. In this report, we employ a novel set of equipment to validate an innovative formulation for synthesizing a low-k silicon dioxide layer. Thickness measurements confirm a higher deposition rate of silicon dioxide layers, with excellent uniformity observed on 8” wafer. Furthermore, the dielectric constant (k) decreases to 2.35, indicating the production of a great low-k material. Additionally, in the formulation of reactants, we avoid the use of silane and organic silane, contributing to improved safety in the facility and effective control of reactant costs. The results highlight an advantageous option for fabricating interconnect layers in ICs.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"185-189"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10462572/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of the highly developed era of 5G, AI, and IoT, the latest generation of ICs is designed with smaller-sized FETs, lower time delays, and reduced power consumption. To address the challenges posed by these advancements, materials with a lower k value than silicon dioxide (low-k, <4.0) are being developed to reduce resistance-capacitance (RC) time delays and power consumption. While low-k materials are still emerging, various material companies continue to introduce innovative low-k products, such as SiLK, Fox, Coral, and Aurora from different companies. Simultaneously, considering proprietary business interests, the processes and materials associated with these products have not been clearly presented. In this report, we employ a novel set of equipment to validate an innovative formulation for synthesizing a low-k silicon dioxide layer. Thickness measurements confirm a higher deposition rate of silicon dioxide layers, with excellent uniformity observed on 8” wafer. Furthermore, the dielectric constant (k) decreases to 2.35, indicating the production of a great low-k material. Additionally, in the formulation of reactants, we avoid the use of silane and organic silane, contributing to improved safety in the facility and effective control of reactant costs. The results highlight an advantageous option for fabricating interconnect layers in ICs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为现代集成电路开创快速安全的低 k 值二氧化硅合成技术
随着 5G、人工智能和物联网等高度发达时代的到来,最新一代集成电路的设计需要更小尺寸的 FET、更低的时间延迟和更低的功耗。为了应对这些进步带来的挑战,人们正在开发 k 值低于二氧化硅(低 k 值,<4.0)的材料,以减少电阻电容 (RC) 时间延迟和功耗。虽然低 k 值材料仍在不断涌现,但各材料公司仍在不断推出创新的低 k 值产品,如不同公司推出的 SiLK、Fox、Coral 和 Aurora。同时,考虑到专有商业利益,与这些产品相关的工艺和材料还没有得到清晰的介绍。在本报告中,我们采用了一套新型设备来验证合成低 K 值二氧化硅层的创新配方。厚度测量结果表明,二氧化硅层的沉积率更高,在 8" 晶圆上观察到了极佳的均匀性。此外,介电常数(k)降至 2.35,表明生产出了极佳的低 k 材料。此外,在反应物配方中,我们避免了硅烷和有机硅烷的使用,从而提高了设备的安全性,并有效控制了反应物成本。这些结果凸显了制造集成电路互连层的有利选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
期刊最新文献
Front Cover Editorial Table of Contents IEEE Transactions on Semiconductor Manufacturing Publication Information Guest Editorial Special Section on Sustainability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1