Recent progress in per- and polyfluoroalkyl substances (PFAS) sensing: A critical mini-review

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Sensors and Actuators Reports Pub Date : 2024-03-01 DOI:10.1016/j.snr.2024.100189
Dorian Thompson , Niloofar Zolfigol , Zehui Xia , Yu Lei
{"title":"Recent progress in per- and polyfluoroalkyl substances (PFAS) sensing: A critical mini-review","authors":"Dorian Thompson ,&nbsp;Niloofar Zolfigol ,&nbsp;Zehui Xia ,&nbsp;Yu Lei","doi":"10.1016/j.snr.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Per- and polyfluoroalkyl substances (PFAS) are a class of fluorinated pollutants found widely in numerous industrial and consumer products. Their excellent heat, oil, and water resistance and slow degradation rate in nature lead to their persistent environmental accumulation with potential adverse impacts on various organisms, including humans. Although the current EPA-approved PFAS detection method is elegant and ultrasensitive, its broader application is greatly limited due to the associated high costs, lengthy detection times, and skilled personnel requirements. Hence, there is a strong demand for rapid, robust, low-cost, and accessible PFAS detection methods to expedite the treatment of contaminated media and control exposure to these emerging substances. Since the publication of our first PFAS sensing review in 2021, numerous new PFAS sensors have been developed and reported. Consequently, this critical review primarily focuses on recent advancements in PFAS sensing platforms, encompassing optical-based, electrochemical-based, and other novel sensing principle-based systems, as well as those that complement liquid chromatography coupled with tandem mass spectrometry, the gold standard for PFAS detection. The underlying detection mechanisms, sensing performances, and potential areas for improvement are thoroughly discussed. We hope that this article offers readers a review of alternative PFAS detection systems developed in recent years and inspires future innovations in field-deployable PFAS sensing technology.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000055/pdfft?md5=fe77429733566de3e62932f7d29854cb&pid=1-s2.0-S2666053924000055-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and polyfluoroalkyl substances (PFAS) are a class of fluorinated pollutants found widely in numerous industrial and consumer products. Their excellent heat, oil, and water resistance and slow degradation rate in nature lead to their persistent environmental accumulation with potential adverse impacts on various organisms, including humans. Although the current EPA-approved PFAS detection method is elegant and ultrasensitive, its broader application is greatly limited due to the associated high costs, lengthy detection times, and skilled personnel requirements. Hence, there is a strong demand for rapid, robust, low-cost, and accessible PFAS detection methods to expedite the treatment of contaminated media and control exposure to these emerging substances. Since the publication of our first PFAS sensing review in 2021, numerous new PFAS sensors have been developed and reported. Consequently, this critical review primarily focuses on recent advancements in PFAS sensing platforms, encompassing optical-based, electrochemical-based, and other novel sensing principle-based systems, as well as those that complement liquid chromatography coupled with tandem mass spectrometry, the gold standard for PFAS detection. The underlying detection mechanisms, sensing performances, and potential areas for improvement are thoroughly discussed. We hope that this article offers readers a review of alternative PFAS detection systems developed in recent years and inspires future innovations in field-deployable PFAS sensing technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全氟和多氟烷基物质 (PFAS) 检测的最新进展:重要小综述
[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
期刊最新文献
Design and optimization of a Cr(VI)-Selective Electrode based on a polymeric ß-cyclodextrin membrane modified with sulfur donor groups Emerging detection of carbon-based gases with multiple bonds by activating MoO bonding in Na, Sb-codoped NiMoO4 Focused ion beam fabrication of high-resolution electrochemical-electroluminescence coupling bipolar nanoelectrode array sensors Ultra-fast detection of pathogens and protein biomarkers using a low-cost silicon plasmonic biosensing platform Enhanced Uric Acid Detection Using Functionalized Multi-walled Carbon Nanotube/AgNi Nanocomposites: A Comparative Study on Screen-printed Carbon Electrode (SPCE) and Fabric-based Biosensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1