Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Infomat Pub Date : 2024-03-07 DOI:10.1002/inf2.12504
Haiyang Pan, Anil Kumar Singh, Chusheng Zhang, Xueqi Hu, Jiayu Shi, Liheng An, Naizhou Wang, Ruihuan Duan, Zheng Liu, Stuart S. P. Parkin, Pritam Deb, Weibo Gao
{"title":"Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures","authors":"Haiyang Pan,&nbsp;Anil Kumar Singh,&nbsp;Chusheng Zhang,&nbsp;Xueqi Hu,&nbsp;Jiayu Shi,&nbsp;Liheng An,&nbsp;Naizhou Wang,&nbsp;Ruihuan Duan,&nbsp;Zheng Liu,&nbsp;Stuart S. P. Parkin,&nbsp;Pritam Deb,&nbsp;Weibo Gao","doi":"10.1002/inf2.12504","DOIUrl":null,"url":null,"abstract":"<p>The exceptional properties of two-dimensional (2D) magnet materials present a novel approach to fabricate functional magnetic tunnel junctions (MTJ) by constructing full van der Waals (vdW) heterostructures with atomically sharp and clean interfaces. The exploration of vdW MTJ devices with high working temperature and adjustable functionalities holds great potential for advancing the application of 2D materials in magnetic sensing and data storage. Here, we report the observation of highly tunable room-temperature tunneling magnetoresistance through electronic means in a full vdW Fe<sub>3</sub>GaTe<sub>2</sub>/WSe<sub>2</sub>/Fe<sub>3</sub>GaTe<sub>2</sub> MTJ. The spin valve effect of the MTJ can be detected even with the current below 1 nA, both at low and room temperatures, yielding a tunneling magnetoresistance (TMR) of 340% at 2 K and 50% at 300 K, respectively. Importantly, the magnitude and sign of TMR can be modulated by a DC bias current, even at room temperature, a capability that was previously unrealized in full vdW MTJs. This tunable TMR arises from the contribution of energy-dependent localized spin states in the metallic ferromagnet Fe<sub>3</sub>GaTe<sub>2</sub> during tunnel transport when a finite electrical bias is applied. Our work offers a new perspective for designing and exploring room-temperature tunable spintronic devices based on vdW magnet heterostructures.</p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":null,"pages":null},"PeriodicalIF":22.7000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12504","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12504","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The exceptional properties of two-dimensional (2D) magnet materials present a novel approach to fabricate functional magnetic tunnel junctions (MTJ) by constructing full van der Waals (vdW) heterostructures with atomically sharp and clean interfaces. The exploration of vdW MTJ devices with high working temperature and adjustable functionalities holds great potential for advancing the application of 2D materials in magnetic sensing and data storage. Here, we report the observation of highly tunable room-temperature tunneling magnetoresistance through electronic means in a full vdW Fe3GaTe2/WSe2/Fe3GaTe2 MTJ. The spin valve effect of the MTJ can be detected even with the current below 1 nA, both at low and room temperatures, yielding a tunneling magnetoresistance (TMR) of 340% at 2 K and 50% at 300 K, respectively. Importantly, the magnitude and sign of TMR can be modulated by a DC bias current, even at room temperature, a capability that was previously unrealized in full vdW MTJs. This tunable TMR arises from the contribution of energy-dependent localized spin states in the metallic ferromagnet Fe3GaTe2 during tunnel transport when a finite electrical bias is applied. Our work offers a new perspective for designing and exploring room-temperature tunable spintronic devices based on vdW magnet heterostructures.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fe3GaTe2/WSe2/Fe3GaTe2范德华异质结构中的室温可调隧道磁阻
二维(2D)磁性材料的特殊性能为制造功能性磁隧道结(MTJ)提供了一种新方法,即通过构建具有原子级锐利和洁净界面的全范德华(vdW)异质结构来制造磁隧道结。探索具有高工作温度和可调功能的 vdW MTJ 器件,对于推动二维材料在磁传感和数据存储领域的应用具有巨大潜力。在此,我们报告了通过电子手段在全 vdW Fe3GaTe2/WSe2/Fe3GaTe2 MTJ 中观察到的高度可调的室温隧道磁阻。在低温和室温条件下,即使电流低于 1 nA,也能检测到 MTJ 的自旋阀效应,在 2 K 和 300 K 条件下隧穿磁阻(TMR)分别为 340% 和 50%。重要的是,即使在室温下,隧穿磁阻的大小和符号也可以通过直流偏置电流进行调制,而这种能力以前在全 vdW MTJ 中是无法实现的。这种可调 TMR 源自金属铁磁体 Fe3GaTe2 在隧道传输过程中施加有限电偏压时产生的能量依赖性局部自旋态。我们的工作为设计和探索基于 vdW 磁性异质结构的室温可调自旋电子器件提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
期刊最新文献
Continuous synthesis of metal oxide-supported high-entropy alloy nanoparticles with remarkable durability and catalytic activity in the hydrogen reduction reaction Bifunctional self-segregated electrolyte realizing high-performance zinc-iodine batteries Computing imaging in shortwave infrared bands enabled by MoTe2/Si 2D-3D heterojunction-based photodiode Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1