{"title":"Analysis of heat transfer characteristics of (6+1)-structure MgB2 cable","authors":"Yifeng Li, Shaotao Dai, Tao Ma, Lei Hu","doi":"10.1016/j.cryogenics.2024.103825","DOIUrl":null,"url":null,"abstract":"<div><p><span><math><mrow><mi>Mg</mi></mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> superconducting material has a wide range of application prospects for its high transition temperature, favorable structural characteristics and low cost. When using <span><math><mrow><mi>Mg</mi></mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> to produce superconducting energy storage magnets, it is necessary to twist superconducting wires into cables to increase their current carrying capacity. One typical cable is made of 6 <span><math><mrow><mi>Mg</mi></mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> superconducting wires wrapped around 1 central copper wire, forming a (6+1) structure. <span><math><mrow><mi>Mg</mi></mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> coils used for energy storage require solid impregnation and can be cooled by liquid hydrogen or solid nitrogen. Due to the need for fast charging and discharging of energy storage coils and low thermal conductivity of commonly used epoxy resin impregnation and solid nitrogen, it is necessary to consider the temperature variation characteristics caused by AC loss and eddy current loss during operation process. A coil with 8 turns in each layer and 4 layers is simulated using the (6+1)-structure cable. In order to obtain better temperature distribution results while reducing the time required for simulation operation, the simulation time is set to 1 s. The impact of epoxy resin properties and surrounding environments on the coil are then analyzed. The results indicate that increasing the thermal conductivity of epoxy resin can significantly reduce the maximum temperature of the coil, while only changing the cooling method is unhelpful in dealing with the problem of local overheating of the coil.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524000456","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
superconducting material has a wide range of application prospects for its high transition temperature, favorable structural characteristics and low cost. When using to produce superconducting energy storage magnets, it is necessary to twist superconducting wires into cables to increase their current carrying capacity. One typical cable is made of 6 superconducting wires wrapped around 1 central copper wire, forming a (6+1) structure. coils used for energy storage require solid impregnation and can be cooled by liquid hydrogen or solid nitrogen. Due to the need for fast charging and discharging of energy storage coils and low thermal conductivity of commonly used epoxy resin impregnation and solid nitrogen, it is necessary to consider the temperature variation characteristics caused by AC loss and eddy current loss during operation process. A coil with 8 turns in each layer and 4 layers is simulated using the (6+1)-structure cable. In order to obtain better temperature distribution results while reducing the time required for simulation operation, the simulation time is set to 1 s. The impact of epoxy resin properties and surrounding environments on the coil are then analyzed. The results indicate that increasing the thermal conductivity of epoxy resin can significantly reduce the maximum temperature of the coil, while only changing the cooling method is unhelpful in dealing with the problem of local overheating of the coil.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics