This study aims to investigate the performance parameters of high-temperature superconducting (HTS) bulks and permanent magnets (PMs) as magnetic field sources in electrodynamic suspension (EDS) systems, with the goal of enhancing the currently low magnetic lift force and reducing the high drag force in such systems. A numerical analysis is conducted on an EDS system utilizing Halbach arrays of HTS and PM bulks. The H-formulation within the Partial Differential Equation (PDE) module is employed to simulate the flux-trapping performance of the HTS bulks, with results verified by experimental data from the literature. The lift and drag forces between the arrays and an aluminium rail are investigated using the Rotating Machinery-Magnetic module of COMSOL. It is observed that increasing the width of the central sample in the array results in a higher peak value of the vertical magnetic flux density and a broader peak profile, indicating a more extended effective magnetic field region across the rail surface. The HTS-based system exhibits significantly higher lift force and loading capacity compared to its PM-based counterpart. Specifically, a Halbach array composed of three HTS bulks (10 mm, 70 mm, 10 mm widths; HTS#10-70-10) achieves a better lift force representing a 211.5 % increase over the PM array. Furthermore, the lift-to-drag ratio (LDR) of the HTS array improves by 17.2 %. The results indicate that the HTS arrays offer superior performance in terms of both lift force and energy efficiency, highlighting their potential for enhancing the applicability of HTS-EDS systems in real-scale applications. This study features the advantages of HTS-based systems in achieving higher loading capacities and more efficient operation conditions compared to the PM arrays.
扫码关注我们
求助内容:
应助结果提醒方式:
