Thermodynamic and hydrodynamic characteristics of interacting system formed in relativistic heavy ion collisions

IF 1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR International Journal of Modern Physics E Pub Date : 2023-12-23 DOI:10.1142/s0218301323500659
Xu-Hong Zhang, Hao-Ning Wang, Fu-Hu Liu, Khusniddin K. Olimov
{"title":"Thermodynamic and hydrodynamic characteristics of interacting system formed in relativistic heavy ion collisions","authors":"Xu-Hong Zhang, Hao-Ning Wang, Fu-Hu Liu, Khusniddin K. Olimov","doi":"10.1142/s0218301323500659","DOIUrl":null,"url":null,"abstract":"<p>To study the energy-dependent characteristics of thermodynamic and hydrodynamic parameters, based on the framework of a multi-source thermal model, we analyze the soft transverse momentum (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span>) spectra of the charged particles (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>π</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><mi>p</mi></mrow><mo>̄</mo></mover></math></span><span></span>, and <i>p</i>) produced in gold–gold (Au–Au) collisions at the center-of-mass energies <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>7</mn><mo>.</mo><mn>7</mn></math></span><span></span>, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV from the STAR Collaboration and in lead–lead (Pb–Pb) collisions at <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mn>6</mn></math></span><span></span> and 5.02<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>TeV from the ALICE Collaboration. In the rest framework of emission source, the probability density function obeyed by meson momenta satisfies the Bose–Einstein distribution, and that obeyed by baryon momenta satisfies the Fermi–Dirac distribution. To simulate the <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of the charged particles, the kinetic freeze-out temperature <i>T</i> and transverse expansion velocity <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of emission source are introduced into the relativistic ideal gas model. Our results, based on the Monte Carlo method for numerical calculation, show a good agreement with the experimental data. The excitation functions of thermodynamic parameter <i>T</i> and hydrodynamic parameter <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> are then obtained from the analyses, which shows an increasing tendency from 7.7<span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV to 5.02<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>TeV in collisions with different centralities.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"60 1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0218301323500659","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

To study the energy-dependent characteristics of thermodynamic and hydrodynamic parameters, based on the framework of a multi-source thermal model, we analyze the soft transverse momentum (pT) spectra of the charged particles (π, π+, K, K+, p̄, and p) produced in gold–gold (Au–Au) collisions at the center-of-mass energies sNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200GeV from the STAR Collaboration and in lead–lead (Pb–Pb) collisions at sNN=2.76 and 5.02TeV from the ALICE Collaboration. In the rest framework of emission source, the probability density function obeyed by meson momenta satisfies the Bose–Einstein distribution, and that obeyed by baryon momenta satisfies the Fermi–Dirac distribution. To simulate the pT of the charged particles, the kinetic freeze-out temperature T and transverse expansion velocity βT of emission source are introduced into the relativistic ideal gas model. Our results, based on the Monte Carlo method for numerical calculation, show a good agreement with the experimental data. The excitation functions of thermodynamic parameter T and hydrodynamic parameter βT are then obtained from the analyses, which shows an increasing tendency from 7.7GeV to 5.02TeV in collisions with different centralities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相对论重离子碰撞中形成的相互作用体系的热力学和流体力学特征
为了研究热力学和流体力学参数随能量变化的特性,我们在多源热模型的框架下,分析了在质量中心能量sNN=7的金-金(Au-Au)对撞中产生的带电粒子(π-、π+、K-、K+、p̄和p)的软横动量(pT)谱图,以及在质量中心能量sNN=7的铅-铅(Pb-Pb)对撞中产生的带电粒子(π-、π+、K-、K+、p̄和p)的软横动量(pT)谱图。7、11.5、14.5、19.6、27、39、62.4 和 200GeV 的金-金(Au-Au)对撞中产生的,以及在 sNN=2.76 和 5.02TeV 的铅-铅(Pb-Pb)对撞中产生的。在发射源的静态框架中,介子矩服从的概率密度函数满足玻色-爱因斯坦分布,重子矩服从的概率密度函数满足费米-狄拉克分布。为了模拟带电粒子的 pT,在相对论理想气体模型中引入了发射源的动力学冻结温度 T 和横向膨胀速度 βT。我们采用蒙特卡洛方法进行数值计算,结果与实验数据非常吻合。分析结果表明,在不同中心度的对撞中,热力学参数 T 和流体力学参数 βT 的激发函数呈从 7.7GeV 到 5.02TeV 的递增趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Modern Physics E
International Journal of Modern Physics E 物理-物理:核物理
CiteScore
1.90
自引率
18.20%
发文量
98
审稿时长
4-8 weeks
期刊介绍: This journal covers the topics on experimental and theoretical nuclear physics, and its applications and interface with astrophysics and particle physics. The journal publishes research articles as well as review articles on topics of current interest.
期刊最新文献
Machine learning nuclear orbital-free density functional based on Thomas–Fermi approach Multiplicity correlation of fast target protons and projectile fragments for the events produced in the interaction of 84Kr nuclei with emulsion nuclei at 1 A GeV Pseudospin symmetry in resonant states in deformed nucleus 154Dy Properties of the 7He ground state studied by the 6He(d,p)7He reaction Fraction constraint in partial wave analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1