Pub Date : 2024-03-27DOI: 10.1142/s0218301324500125
Y. Y. Chen, X. H. Wu
Orbital-free density functional theory (DFT) is much more efficient than the orbital-dependent Kohn–Sham DFT due to the avoidance of the auxiliary one-body orbitals. The machine learning approach has been applied to build nuclear orbital-free DFT recently [Wu et al., Phys. Rev. C105 (2022) L031303] and achieved more precise descriptions for nuclei than existing orbital-free DFTs. Here, improved machine learning nuclear orbital-free density functional is built by including the Thomas–Fermi approach as a basement. Performances of the functional are compared in detail with the ones based on the pure machine learning approach. It is found that with the Thomas–Fermi functional included, the machine-learning-based functional can achieve better performance in directly predicting the kinetic energies and in providing the ground-state properties by the self-consistent procedures.
{"title":"Machine learning nuclear orbital-free density functional based on Thomas–Fermi approach","authors":"Y. Y. Chen, X. H. Wu","doi":"10.1142/s0218301324500125","DOIUrl":"https://doi.org/10.1142/s0218301324500125","url":null,"abstract":"<p>Orbital-free density functional theory (DFT) is much more efficient than the orbital-dependent Kohn–Sham DFT due to the avoidance of the auxiliary one-body orbitals. The machine learning approach has been applied to build nuclear orbital-free DFT recently [Wu <i>et al.</i>, <i>Phys. Rev. C</i><b>105</b> (2022) L031303] and achieved more precise descriptions for nuclei than existing orbital-free DFTs. Here, improved machine learning nuclear orbital-free density functional is built by including the Thomas–Fermi approach as a basement. Performances of the functional are compared in detail with the ones based on the pure machine learning approach. It is found that with the Thomas–Fermi functional included, the machine-learning-based functional can achieve better performance in directly predicting the kinetic energies and in providing the ground-state properties by the self-consistent procedures.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"34 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-20DOI: 10.1142/s0218301324500113
M. K. Singh, B. Kumari
It has become obvious that one crucial aspect in understanding high energy nuclear reactions is the fragmentation of colliding nuclei. The nuclear emulsion is a 4 detector that makes it simple to identify and quantify the charges of projectile fragments. In this work, we study the multiplicity distribution and angle distributions of single, double charge projectile fragments, fast target protons (gray particle) as well as their correlation for the events produced in the interactions of with emulsion nuclei at 1AGeV. We also study the target-dependent angle distribution of gray particles. The results are compared with other experimental data as per availability. This analysis shows that multiplicity distributions have a remarkable link between the projectile and target fragmentation processes.
{"title":"Multiplicity correlation of fast target protons and projectile fragments for the events produced in the interaction of 84Kr nuclei with emulsion nuclei at 1 A GeV","authors":"M. K. Singh, B. Kumari","doi":"10.1142/s0218301324500113","DOIUrl":"https://doi.org/10.1142/s0218301324500113","url":null,"abstract":"<p>It has become obvious that one crucial aspect in understanding high energy nuclear reactions is the fragmentation of colliding nuclei. The nuclear emulsion is a 4<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>π</mi></math></span><span></span> detector that makes it simple to identify and quantify the charges of projectile fragments. In this work, we study the multiplicity distribution and angle distributions of single, double charge projectile fragments, fast target protons (gray particle) as well as their correlation for the events produced in the interactions of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>8</mn><mn>4</mn></mrow></msup><msub><mrow><mstyle><mtext mathvariant=\"normal\">Kr</mtext></mstyle></mrow><mrow><mn>3</mn><mn>6</mn></mrow></msub></math></span><span></span> with emulsion nuclei at 1<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>A<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV. We also study the target-dependent angle distribution of gray particles. The results are compared with other experimental data as per availability. This analysis shows that multiplicity distributions have a remarkable link between the projectile and target fragmentation processes.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"162 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-16DOI: 10.1142/s0218301324500058
Xin-Xing Shi, Zhen-Yu Zheng
It is known that pseudospin symmetry plays a crucial role in formation of many physical phenomena. By combining the relativistic mean field theory with the complex momentum representation method, the pseudospin symmetry in the single particle resonant states in the deformed nucleus Dy is investigated through the energy and width splittings, the quadrupole deformation parameter, the radial density distributions and occupation probabilities of the pseudospin doublets. Near the continuum threshold, the pseudospin symmetry is well reserved in both bound and resonant states. The energy and width splittings of pseudospin doublets in resonant states exhibit correlations with the deformation and quantum numbers. The good pseudospin symmetry is expected with lower pseudo-orbital angular momentum projection and the main quantum number N. In general, an increase in deformation tends to weaken the quality of the pseudospin symmetry. The understanding of the evolution of the pseudospin doublets in the resonant states has been deepened by studying the pseudospin symmetry in the deformed nuclei.
{"title":"Pseudospin symmetry in resonant states in deformed nucleus 154Dy","authors":"Xin-Xing Shi, Zhen-Yu Zheng","doi":"10.1142/s0218301324500058","DOIUrl":"https://doi.org/10.1142/s0218301324500058","url":null,"abstract":"<p>It is known that pseudospin symmetry plays a crucial role in formation of many physical phenomena. By combining the relativistic mean field theory with the complex momentum representation method, the pseudospin symmetry in the single particle resonant states in the deformed nucleus <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>1</mn><mn>5</mn><mn>4</mn></mrow></msup></math></span><span></span>Dy is investigated through the energy and width splittings, the quadrupole deformation parameter, the radial density distributions and occupation probabilities of the pseudospin doublets. Near the continuum threshold, the pseudospin symmetry is well reserved in both bound and resonant states. The energy and width splittings of pseudospin doublets in resonant states exhibit correlations with the deformation and quantum numbers. The good pseudospin symmetry is expected with lower pseudo-orbital angular momentum projection <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><mi mathvariant=\"normal\">Λ</mi></mrow><mo>̃</mo></mover></math></span><span></span> and the main quantum number <i>N</i>. In general, an increase in deformation tends to weaken the quality of the pseudospin symmetry. The understanding of the evolution of the pseudospin doublets in the resonant states has been deepened by studying the pseudospin symmetry in the deformed nuclei.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"5 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To resolve the nonconvex optimization problem in partial wave analysis, this paper introduces a novel approach that incorporates fraction constraints into the likelihood function. This method offers significant improvements in the efficiency of pole searching within partial wave analysis.
{"title":"Fraction constraint in partial wave analysis","authors":"Xiang Dong, Chu-Cheng Pan, Yu-Chang Sun, Ao-Yan Cheng, Ao-Bo Wang, Hao Cai, Kai Zhu","doi":"10.1142/s0218301324500010","DOIUrl":"https://doi.org/10.1142/s0218301324500010","url":null,"abstract":"<p>To resolve the nonconvex optimization problem in partial wave analysis, this paper introduces a novel approach that incorporates fraction constraints into the likelihood function. This method offers significant improvements in the efficiency of pole searching within partial wave analysis.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"20 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1142/s0218301324500022
A. A. Bezbakh, M. S. Golovkov, A. S. Denikin, R. Wolski, S. G. Belogurov, D. Biare, V. Chudoba, A. S. Fomichev, E. M. Gazeeva, A. V. Gorshkov, G. Kaminski, B. R. Khamidullin, M. Khirk, S. A. Krupko, B. Mauyey, I. A. Muzalevskii, W. Piatek, A. M. Quynh, S. I. Sidorchuk, R. S. Slepnev, A. Swiercz, G. M. Ter-Akopian, B. Zalewski
The 7He nucleus was studied using the 6HeHe reaction in inverse kinematics at 29 MeV 6He beam delivered by the ACCULINNA-2 fragment separator (FLNR, JINR). The registration of neutrons from decay made it possible to derive the 7He ground state parameters, the decay energy of 0.38(2)MeV and width of 0.11(3)MeV.
{"title":"Properties of the 7He ground state studied by the 6He(d,p)7He reaction","authors":"A. A. Bezbakh, M. S. Golovkov, A. S. Denikin, R. Wolski, S. G. Belogurov, D. Biare, V. Chudoba, A. S. Fomichev, E. M. Gazeeva, A. V. Gorshkov, G. Kaminski, B. R. Khamidullin, M. Khirk, S. A. Krupko, B. Mauyey, I. A. Muzalevskii, W. Piatek, A. M. Quynh, S. I. Sidorchuk, R. S. Slepnev, A. Swiercz, G. M. Ter-Akopian, B. Zalewski","doi":"10.1142/s0218301324500022","DOIUrl":"https://doi.org/10.1142/s0218301324500022","url":null,"abstract":"<p>The <sup>7</sup>He nucleus was studied using the <sup>6</sup>He<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mi>d</mi><mo>,</mo><mi>p</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>7</mn></mrow></msup></math></span><span></span>He reaction in inverse kinematics at 29 <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mtext>A</mtext><mo>⋅</mo></math></span><span></span>MeV <sup>6</sup>He beam delivered by the ACCULINNA-2 fragment separator (FLNR, JINR). The registration of neutrons from <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>7</mn></mrow></msup><mstyle><mtext mathvariant=\"normal\">He</mtext></mstyle><mo>→</mo><mi>n</mi><msup><mrow><mo>+</mo></mrow><mrow><mn>6</mn></mrow></msup><mstyle><mtext mathvariant=\"normal\">He</mtext></mstyle></math></span><span></span> decay made it possible to derive the <sup>7</sup>He ground state parameters, the decay energy of 0.38(2)<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MeV and width of 0.11(3)<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MeV.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"108 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-29DOI: 10.1142/s0218301323410045
Anke Lei, Dujuan Wang, Dai-Mei Zhou, Ben-Hao Sa, Laszlo Pal Csernai, Larissa V. Bravina
We calculate four types of initial vorticities in AuAu collisions at energies –200GeV using a microscopic transport model PACIAE. Our simulation shows the nonmonotonic dependence of the initial vorticities on the collision energies. The energy turning point is around 10–15GeV for different vorticities but not sensitive to impact parameter.
{"title":"Initial vorticities of quark–gluon matter in heavy-ion collisions","authors":"Anke Lei, Dujuan Wang, Dai-Mei Zhou, Ben-Hao Sa, Laszlo Pal Csernai, Larissa V. Bravina","doi":"10.1142/s0218301323410045","DOIUrl":"https://doi.org/10.1142/s0218301323410045","url":null,"abstract":"<p>We calculate four types of initial vorticities in Au<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span><span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo>+</mo></math></span><span></span><span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>Au collisions at energies <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>S</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">NN</mtext></mstyle></mrow></msub></mrow></msqrt><mo>=</mo><mn>5</mn></math></span><span></span>–200<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV using a microscopic transport model PACIAE. Our simulation shows the nonmonotonic dependence of the initial vorticities on the collision energies. The energy turning point is around 10–15<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV for different vorticities but not sensitive to impact parameter.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"20 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-12DOI: 10.1142/s0218301323500702
Yong Zhang, Shi-Yao Wang, Peng Ru, Wei-Hua Wu
We study the impact of the in-medium mass splitting between bosons and anti-bosons on their spectra and elliptic flow. The in-medium mass splitting may cause a separation in the transverse momentum spectra, as well as a division in the elliptic flow between bosons and anti-bosons. The magnitude of this effect becomes greater as the in-medium mass splitting increases. With the increasing rapidity, the splitting effect of the spectra increases and the splitting effect of the elliptic flow decreases. These phenomena may provide a way to differentiate whether the influences on boson and anti-boson in the medium are consistent.
{"title":"Squeezed spectra and elliptic flow of bosons and anti-bosons with in-medium mass splitting","authors":"Yong Zhang, Shi-Yao Wang, Peng Ru, Wei-Hua Wu","doi":"10.1142/s0218301323500702","DOIUrl":"https://doi.org/10.1142/s0218301323500702","url":null,"abstract":"<p>We study the impact of the in-medium mass splitting between bosons and anti-bosons on their spectra and elliptic flow. The in-medium mass splitting may cause a separation in the transverse momentum spectra, as well as a division in the elliptic flow between bosons and anti-bosons. The magnitude of this effect becomes greater as the in-medium mass splitting increases. With the increasing rapidity, the splitting effect of the spectra increases and the splitting effect of the elliptic flow decreases. These phenomena may provide a way to differentiate whether the influences on boson and anti-boson in the medium are consistent.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"86 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-23DOI: 10.1142/s0218301323500659
Xu-Hong Zhang, Hao-Ning Wang, Fu-Hu Liu, Khusniddin K. Olimov
<p>To study the energy-dependent characteristics of thermodynamic and hydrodynamic parameters, based on the framework of a multi-source thermal model, we analyze the soft transverse momentum (<span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span>) spectra of the charged particles (<span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><msup><mrow><mi>π</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mover accent="true"><mrow><mi>p</mi></mrow><mo>̄</mo></mover></math></span><span></span>, and <i>p</i>) produced in gold–gold (Au–Au) collisions at the center-of-mass energies <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>7</mn><mo>.</mo><mn>7</mn></math></span><span></span>, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200<span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>GeV from the STAR Collaboration and in lead–lead (Pb–Pb) collisions at <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mn>6</mn></math></span><span></span> and 5.02<span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>TeV from the ALICE Collaboration. In the rest framework of emission source, the probability density function obeyed by meson momenta satisfies the Bose–Einstein distribution, and that obeyed by baryon momenta satisfies the Fermi–Dirac distribution. To simulate the <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of the charged particles, the kinetic freeze-out temperature <i>T</i> and transverse expansion velocity <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msub><mrow><mi>β</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of emission source are introduced into the relativistic ideal gas model. Our results, based on the Monte Carlo method for numerical calculation, show a good agreement with the experimental data. The excitation f
为了研究热力学和流体力学参数随能量变化的特性,我们在多源热模型的框架下,分析了在质量中心能量sNN=7的金-金(Au-Au)对撞中产生的带电粒子(π-、π+、K-、K+、p̄和p)的软横动量(pT)谱图,以及在质量中心能量sNN=7的铅-铅(Pb-Pb)对撞中产生的带电粒子(π-、π+、K-、K+、p̄和p)的软横动量(pT)谱图。7、11.5、14.5、19.6、27、39、62.4 和 200GeV 的金-金(Au-Au)对撞中产生的,以及在 sNN=2.76 和 5.02TeV 的铅-铅(Pb-Pb)对撞中产生的。在发射源的静态框架中,介子矩服从的概率密度函数满足玻色-爱因斯坦分布,重子矩服从的概率密度函数满足费米-狄拉克分布。为了模拟带电粒子的 pT,在相对论理想气体模型中引入了发射源的动力学冻结温度 T 和横向膨胀速度 βT。我们采用蒙特卡洛方法进行数值计算,结果与实验数据非常吻合。分析结果表明,在不同中心度的对撞中,热力学参数 T 和流体力学参数 βT 的激发函数呈从 7.7GeV 到 5.02TeV 的递增趋势。
{"title":"Thermodynamic and hydrodynamic characteristics of interacting system formed in relativistic heavy ion collisions","authors":"Xu-Hong Zhang, Hao-Ning Wang, Fu-Hu Liu, Khusniddin K. Olimov","doi":"10.1142/s0218301323500659","DOIUrl":"https://doi.org/10.1142/s0218301323500659","url":null,"abstract":"<p>To study the energy-dependent characteristics of thermodynamic and hydrodynamic parameters, based on the framework of a multi-source thermal model, we analyze the soft transverse momentum (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span>) spectra of the charged particles (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>π</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><mi>p</mi></mrow><mo>̄</mo></mover></math></span><span></span>, and <i>p</i>) produced in gold–gold (Au–Au) collisions at the center-of-mass energies <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>7</mn><mo>.</mo><mn>7</mn></math></span><span></span>, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV from the STAR Collaboration and in lead–lead (Pb–Pb) collisions at <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mn>6</mn></math></span><span></span> and 5.02<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>TeV from the ALICE Collaboration. In the rest framework of emission source, the probability density function obeyed by meson momenta satisfies the Bose–Einstein distribution, and that obeyed by baryon momenta satisfies the Fermi–Dirac distribution. To simulate the <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of the charged particles, the kinetic freeze-out temperature <i>T</i> and transverse expansion velocity <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of emission source are introduced into the relativistic ideal gas model. Our results, based on the Monte Carlo method for numerical calculation, show a good agreement with the experimental data. The excitation f","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"60 1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-21DOI: 10.1142/s0218301323500660
Khusniddin K. Olimov, Igor A. Lebedev, Boburbek J. Tukhtaev, Anastasiya I. Fedosimova, Fu-Hu Liu, Shokhida A. Khudoyberdieva, Shakhnoza Z. Kanokova
<p>The <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mo stretchy="false">〈</mo><msub><mrow><mi>N</mi></mrow><mrow><mstyle><mtext mathvariant="normal">part</mtext></mstyle></mrow></msub><mo stretchy="false">〉</mo></math></span><span></span> dependencies of the experimental average transverse momentum, <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mo stretchy="false">〈</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy="false">〉</mo></math></span><span></span>, of the charged pions, charged kaons, protons and antiprotons produced at midrapidity (<span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mi>|</mi><mi>y</mi><mi>|</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>1</mn></math></span><span></span>) in <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mstyle><mtext mathvariant="normal">Au</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant="normal">Au</mtext></mstyle></math></span><span></span> collisions from the Beam Energy Scan (BES) program at the RHIC (Relativistic Heavy Ion Collider), measured by STAR Collaboration in the <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msup><mrow><mo stretchy="false">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mn>1</mn><mo stretchy="false">∕</mo><mn>2</mn></mrow></msup><mo>=</mo><mn>7</mn></math></span><span></span>–39-GeV energy range, have been described quite well with the power-law model function. We have obtained <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mn>0</mn><mo><</mo><mi>α</mi><mo stretchy="false">(</mo><mstyle><mtext mathvariant="normal">pion</mtext></mstyle><mo stretchy="false">)</mo><mo><</mo><mi>α</mi><mo stretchy="false">(</mo><mstyle><mtext mathvariant="normal">kaon</mtext></mstyle><mo stretchy="false">)</mo><mo><</mo><mi>α</mi><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mstyle><mtext mathvariant="normal">anti</mtext></mstyle><mo stretchy="false">)</mo><mstyle><mtext mathvariant="normal">proton</mtext></mstyle><mo stretchy="false">)</mo><mo><</mo><mn>0</mn><mo>.</mo><mn>2</mn></math></span><span></span> inequality at all BES energies, indicating the clear mass ordering (dependence) of the power parameter <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><mi>α</mi></math></span><span></span>. On the whole, the exponent parameter <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mi>α</mi></math></span><span></span> for the charged kaons as well as (anti)protons decreases noticeably with increasing <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><mstyle><mtext mathvariant="normal">Au</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant="normal">Au</mtext></mstyle></math></span><span></span> collision energy from <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msup><m
{"title":"Evolution of midrapidity average transverse momentum of pions, kaons, protons and antiprotons in Au+Au collisions in (snn)1∕2= 7–39-GeV energy range from the beam energy scan program","authors":"Khusniddin K. Olimov, Igor A. Lebedev, Boburbek J. Tukhtaev, Anastasiya I. Fedosimova, Fu-Hu Liu, Shokhida A. Khudoyberdieva, Shakhnoza Z. Kanokova","doi":"10.1142/s0218301323500660","DOIUrl":"https://doi.org/10.1142/s0218301323500660","url":null,"abstract":"<p>The <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">〈</mo><msub><mrow><mi>N</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">part</mtext></mstyle></mrow></msub><mo stretchy=\"false\">〉</mo></math></span><span></span> dependencies of the experimental average transverse momentum, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">〈</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">〉</mo></math></span><span></span>, of the charged pions, charged kaons, protons and antiprotons produced at midrapidity (<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>|</mi><mi>y</mi><mi>|</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>1</mn></math></span><span></span>) in <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Au</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant=\"normal\">Au</mtext></mstyle></math></span><span></span> collisions from the Beam Energy Scan (BES) program at the RHIC (Relativistic Heavy Ion Collider), measured by STAR Collaboration in the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></mrow></msup><mo>=</mo><mn>7</mn></math></span><span></span>–39-GeV energy range, have been described quite well with the power-law model function. We have obtained <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo><</mo><mi>α</mi><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">pion</mtext></mstyle><mo stretchy=\"false\">)</mo><mo><</mo><mi>α</mi><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">kaon</mtext></mstyle><mo stretchy=\"false\">)</mo><mo><</mo><mi>α</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">anti</mtext></mstyle><mo stretchy=\"false\">)</mo><mstyle><mtext mathvariant=\"normal\">proton</mtext></mstyle><mo stretchy=\"false\">)</mo><mo><</mo><mn>0</mn><mo>.</mo><mn>2</mn></math></span><span></span> inequality at all BES energies, indicating the clear mass ordering (dependence) of the power parameter <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>. On the whole, the exponent parameter <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> for the charged kaons as well as (anti)protons decreases noticeably with increasing <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Au</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant=\"normal\">Au</mtext></mstyle></math></span><span></span> collision energy from <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><m","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"82 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}