首页 > 最新文献

International Journal of Modern Physics E最新文献

英文 中文
Machine learning nuclear orbital-free density functional based on Thomas–Fermi approach 基于托马斯-费米方法的机器学习无核轨道密度函数
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2024-03-27 DOI: 10.1142/s0218301324500125
Y. Y. Chen, X. H. Wu

Orbital-free density functional theory (DFT) is much more efficient than the orbital-dependent Kohn–Sham DFT due to the avoidance of the auxiliary one-body orbitals. The machine learning approach has been applied to build nuclear orbital-free DFT recently [Wu et al., Phys. Rev. C105 (2022) L031303] and achieved more precise descriptions for nuclei than existing orbital-free DFTs. Here, improved machine learning nuclear orbital-free density functional is built by including the Thomas–Fermi approach as a basement. Performances of the functional are compared in detail with the ones based on the pure machine learning approach. It is found that with the Thomas–Fermi functional included, the machine-learning-based functional can achieve better performance in directly predicting the kinetic energies and in providing the ground-state properties by the self-consistent procedures.

由于避免了辅助单体轨道,无轨道密度泛函理论(DFT)比依赖轨道的 Kohn-Sham DFT 更有效。最近,机器学习方法被应用于建立核无轨道 DFT [Wu 等,Phys. Rev. C105 (2022) L031303],并取得了比现有无轨道 DFT 更精确的核描述。在这里,通过将托马斯-费米方法作为基底,建立了改进的机器学习核无轨道密度函数。该函数的性能与基于纯机器学习方法的函数进行了详细比较。结果发现,加入托马斯-费米函数后,基于机器学习的函数在直接预测动能和通过自洽程序提供基态性质方面能取得更好的性能。
{"title":"Machine learning nuclear orbital-free density functional based on Thomas–Fermi approach","authors":"Y. Y. Chen, X. H. Wu","doi":"10.1142/s0218301324500125","DOIUrl":"https://doi.org/10.1142/s0218301324500125","url":null,"abstract":"<p>Orbital-free density functional theory (DFT) is much more efficient than the orbital-dependent Kohn–Sham DFT due to the avoidance of the auxiliary one-body orbitals. The machine learning approach has been applied to build nuclear orbital-free DFT recently [Wu <i>et al.</i>, <i>Phys. Rev. C</i><b>105</b> (2022) L031303] and achieved more precise descriptions for nuclei than existing orbital-free DFTs. Here, improved machine learning nuclear orbital-free density functional is built by including the Thomas–Fermi approach as a basement. Performances of the functional are compared in detail with the ones based on the pure machine learning approach. It is found that with the Thomas–Fermi functional included, the machine-learning-based functional can achieve better performance in directly predicting the kinetic energies and in providing the ground-state properties by the self-consistent procedures.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"34 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity correlation of fast target protons and projectile fragments for the events produced in the interaction of 84Kr nuclei with emulsion nuclei at 1 A GeV 84Kr 核与乳状核在 1 A GeV 的相互作用中产生的事件的快速目标质子和射弹碎片的倍率相关性
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2024-03-20 DOI: 10.1142/s0218301324500113
M. K. Singh, B. Kumari

It has become obvious that one crucial aspect in understanding high energy nuclear reactions is the fragmentation of colliding nuclei. The nuclear emulsion is a 4π detector that makes it simple to identify and quantify the charges of projectile fragments. In this work, we study the multiplicity distribution and angle distributions of single, double charge projectile fragments, fast target protons (gray particle) as well as their correlation for the events produced in the interactions of 84Kr36 with emulsion nuclei at 1AGeV. We also study the target-dependent angle distribution of gray particles. The results are compared with other experimental data as per availability. This analysis shows that multiplicity distributions have a remarkable link between the projectile and target fragmentation processes.

显而易见,了解高能核反应的一个关键方面是碰撞原子核的碎裂。核乳化液是一种 4π 探测器,可以简单地识别和量化弹丸碎片的电荷。在这项工作中,我们研究了 1AGeV 下 84Kr36 与乳状核相互作用时产生的单电荷、双电荷射弹碎片、快速靶质子(灰色粒子)的倍率分布和角度分布及其相关性。我们还研究了灰色粒子与目标相关的角度分布。我们将研究结果与其他可用的实验数据进行了比较。分析表明,倍率分布在射弹和目标碎裂过程之间有着显著的联系。
{"title":"Multiplicity correlation of fast target protons and projectile fragments for the events produced in the interaction of 84Kr nuclei with emulsion nuclei at 1 A GeV","authors":"M. K. Singh, B. Kumari","doi":"10.1142/s0218301324500113","DOIUrl":"https://doi.org/10.1142/s0218301324500113","url":null,"abstract":"<p>It has become obvious that one crucial aspect in understanding high energy nuclear reactions is the fragmentation of colliding nuclei. The nuclear emulsion is a 4<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>π</mi></math></span><span></span> detector that makes it simple to identify and quantify the charges of projectile fragments. In this work, we study the multiplicity distribution and angle distributions of single, double charge projectile fragments, fast target protons (gray particle) as well as their correlation for the events produced in the interactions of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>8</mn><mn>4</mn></mrow></msup><msub><mrow><mstyle><mtext mathvariant=\"normal\">Kr</mtext></mstyle></mrow><mrow><mn>3</mn><mn>6</mn></mrow></msub></math></span><span></span> with emulsion nuclei at 1<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>A<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV. We also study the target-dependent angle distribution of gray particles. The results are compared with other experimental data as per availability. This analysis shows that multiplicity distributions have a remarkable link between the projectile and target fragmentation processes.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"162 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140201961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudospin symmetry in resonant states in deformed nucleus 154Dy 变形核 154Dy 共振态的伪ospin 对称性
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2024-03-16 DOI: 10.1142/s0218301324500058
Xin-Xing Shi, Zhen-Yu Zheng

It is known that pseudospin symmetry plays a crucial role in formation of many physical phenomena. By combining the relativistic mean field theory with the complex momentum representation method, the pseudospin symmetry in the single particle resonant states in the deformed nucleus 154Dy is investigated through the energy and width splittings, the quadrupole deformation parameter, the radial density distributions and occupation probabilities of the pseudospin doublets. Near the continuum threshold, the pseudospin symmetry is well reserved in both bound and resonant states. The energy and width splittings of pseudospin doublets in resonant states exhibit correlations with the deformation and quantum numbers. The good pseudospin symmetry is expected with lower pseudo-orbital angular momentum projection Λ̃ and the main quantum number N. In general, an increase in deformation tends to weaken the quality of the pseudospin symmetry. The understanding of the evolution of the pseudospin doublets in the resonant states has been deepened by studying the pseudospin symmetry in the deformed nuclei.

众所周知,伪自旋对称性在许多物理现象的形成中起着至关重要的作用。通过将相对论均场理论与复动量表示方法相结合,研究了变形核 154Dy 中单粒子共振态的伪自旋对称性,包括伪自旋双特的能量和宽度分裂、四极变形参数、径向密度分布和占据概率。在连续阈附近,结合态和共振态都保留了良好的伪ospin 对称性。共振态中假自旋双特的能量和宽度分裂与形变和量子数相关。假轨道角动量投影Λ̃和主量子数N越小,假空对称性越好。通过研究变形核的伪自旋对称性,加深了对共振态中伪自旋双态演变的理解。
{"title":"Pseudospin symmetry in resonant states in deformed nucleus 154Dy","authors":"Xin-Xing Shi, Zhen-Yu Zheng","doi":"10.1142/s0218301324500058","DOIUrl":"https://doi.org/10.1142/s0218301324500058","url":null,"abstract":"<p>It is known that pseudospin symmetry plays a crucial role in formation of many physical phenomena. By combining the relativistic mean field theory with the complex momentum representation method, the pseudospin symmetry in the single particle resonant states in the deformed nucleus <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>1</mn><mn>5</mn><mn>4</mn></mrow></msup></math></span><span></span>Dy is investigated through the energy and width splittings, the quadrupole deformation parameter, the radial density distributions and occupation probabilities of the pseudospin doublets. Near the continuum threshold, the pseudospin symmetry is well reserved in both bound and resonant states. The energy and width splittings of pseudospin doublets in resonant states exhibit correlations with the deformation and quantum numbers. The good pseudospin symmetry is expected with lower pseudo-orbital angular momentum projection <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><mi mathvariant=\"normal\">Λ</mi></mrow><mo>̃</mo></mover></math></span><span></span> and the main quantum number <i>N</i>. In general, an increase in deformation tends to weaken the quality of the pseudospin symmetry. The understanding of the evolution of the pseudospin doublets in the resonant states has been deepened by studying the pseudospin symmetry in the deformed nuclei.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"5 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fraction constraint in partial wave analysis 部分波分析中的分数约束
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2024-02-03 DOI: 10.1142/s0218301324500010
Xiang Dong, Chu-Cheng Pan, Yu-Chang Sun, Ao-Yan Cheng, Ao-Bo Wang, Hao Cai, Kai Zhu

To resolve the nonconvex optimization problem in partial wave analysis, this paper introduces a novel approach that incorporates fraction constraints into the likelihood function. This method offers significant improvements in the efficiency of pole searching within partial wave analysis.

为了解决偏波分析中的非凸优化问题,本文介绍了一种将分数约束纳入似然函数的新方法。这种方法大大提高了偏波分析中极点搜索的效率。
{"title":"Fraction constraint in partial wave analysis","authors":"Xiang Dong, Chu-Cheng Pan, Yu-Chang Sun, Ao-Yan Cheng, Ao-Bo Wang, Hao Cai, Kai Zhu","doi":"10.1142/s0218301324500010","DOIUrl":"https://doi.org/10.1142/s0218301324500010","url":null,"abstract":"<p>To resolve the nonconvex optimization problem in partial wave analysis, this paper introduces a novel approach that incorporates fraction constraints into the likelihood function. This method offers significant improvements in the efficiency of pole searching within partial wave analysis.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"20 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of the 7He ground state studied by the 6He(d,p)7He reaction 通过 6He(d,p)7He 反应研究 7He 基态的性质
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2024-02-03 DOI: 10.1142/s0218301324500022
A. A. Bezbakh, M. S. Golovkov, A. S. Denikin, R. Wolski, S. G. Belogurov, D. Biare, V. Chudoba, A. S. Fomichev, E. M. Gazeeva, A. V. Gorshkov, G. Kaminski, B. R. Khamidullin, M. Khirk, S. A. Krupko, B. Mauyey, I. A. Muzalevskii, W. Piatek, A. M. Quynh, S. I. Sidorchuk, R. S. Slepnev, A. Swiercz, G. M. Ter-Akopian, B. Zalewski

The 7He nucleus was studied using the 6He(d,p)7He reaction in inverse kinematics at 29 AMeV 6He beam delivered by the ACCULINNA-2 fragment separator (FLNR, JINR). The registration of neutrons from 7Hen+6He decay made it possible to derive the 7He ground state parameters, the decay energy of 0.38(2)MeV and width of 0.11(3)MeV.

利用 ACCULINNA-2 碎片分离器(日本核研究开发机构 FLNR)输出的 29 A⋅MeV 6He 光束,以反运动学方式进行了 6He(d,p)7He 反应,对 7He 核进行了研究。对来自 7He→n+6He 衰变的中子的登记使我们有可能得出 7He 基态参数,即 0.38(2)MeV 的衰变能量和 0.11(3)MeV 的衰变宽度。
{"title":"Properties of the 7He ground state studied by the 6He(d,p)7He reaction","authors":"A. A. Bezbakh, M. S. Golovkov, A. S. Denikin, R. Wolski, S. G. Belogurov, D. Biare, V. Chudoba, A. S. Fomichev, E. M. Gazeeva, A. V. Gorshkov, G. Kaminski, B. R. Khamidullin, M. Khirk, S. A. Krupko, B. Mauyey, I. A. Muzalevskii, W. Piatek, A. M. Quynh, S. I. Sidorchuk, R. S. Slepnev, A. Swiercz, G. M. Ter-Akopian, B. Zalewski","doi":"10.1142/s0218301324500022","DOIUrl":"https://doi.org/10.1142/s0218301324500022","url":null,"abstract":"<p>The <sup>7</sup>He nucleus was studied using the <sup>6</sup>He<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mi>d</mi><mo>,</mo><mi>p</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>7</mn></mrow></msup></math></span><span></span>He reaction in inverse kinematics at 29 <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mtext>A</mtext><mo>⋅</mo></math></span><span></span>MeV <sup>6</sup>He beam delivered by the ACCULINNA-2 fragment separator (FLNR, JINR). The registration of neutrons from <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow></mrow><mrow><mn>7</mn></mrow></msup><mstyle><mtext mathvariant=\"normal\">He</mtext></mstyle><mo>→</mo><mi>n</mi><msup><mrow><mo>+</mo></mrow><mrow><mn>6</mn></mrow></msup><mstyle><mtext mathvariant=\"normal\">He</mtext></mstyle></math></span><span></span> decay made it possible to derive the <sup>7</sup>He ground state parameters, the decay energy of 0.38(2)<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MeV and width of 0.11(3)<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MeV.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"108 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140149531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Initial vorticities of quark–gluon matter in heavy-ion collisions 重离子碰撞中夸克胶子物质的初始涡度
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2024-01-29 DOI: 10.1142/s0218301323410045
Anke Lei, Dujuan Wang, Dai-Mei Zhou, Ben-Hao Sa, Laszlo Pal Csernai, Larissa V. Bravina

We calculate four types of initial vorticities in Au+Au collisions at energies SNN=5–200GeV using a microscopic transport model PACIAE. Our simulation shows the nonmonotonic dependence of the initial vorticities on the collision energies. The energy turning point is around 10–15GeV for different vorticities but not sensitive to impact parameter.

我们利用微观输运模型 PACIAE 计算了能量 SNN=5-200GeV 时 Au+Au 碰撞中的四种初始涡度。我们的模拟显示了初始涡度对碰撞能量的非单调依赖性。对于不同的涡度,能量转折点在 10-15GeV 左右,但对碰撞参数并不敏感。
{"title":"Initial vorticities of quark–gluon matter in heavy-ion collisions","authors":"Anke Lei, Dujuan Wang, Dai-Mei Zhou, Ben-Hao Sa, Laszlo Pal Csernai, Larissa V. Bravina","doi":"10.1142/s0218301323410045","DOIUrl":"https://doi.org/10.1142/s0218301323410045","url":null,"abstract":"<p>We calculate four types of initial vorticities in Au<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span><span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo>+</mo></math></span><span></span><span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>Au collisions at energies <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>S</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">NN</mtext></mstyle></mrow></msub></mrow></msqrt><mo>=</mo><mn>5</mn></math></span><span></span>–200<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV using a microscopic transport model PACIAE. Our simulation shows the nonmonotonic dependence of the initial vorticities on the collision energies. The energy turning point is around 10–15<span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV for different vorticities but not sensitive to impact parameter.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"20 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140076130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Squeezed spectra and elliptic flow of bosons and anti-bosons with in-medium mass splitting 具有中等质量分裂的玻色子和反玻色子的挤压谱和椭圆流
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2024-01-12 DOI: 10.1142/s0218301323500702
Yong Zhang, Shi-Yao Wang, Peng Ru, Wei-Hua Wu

We study the impact of the in-medium mass splitting between bosons and anti-bosons on their spectra and elliptic flow. The in-medium mass splitting may cause a separation in the transverse momentum spectra, as well as a division in the elliptic flow between bosons and anti-bosons. The magnitude of this effect becomes greater as the in-medium mass splitting increases. With the increasing rapidity, the splitting effect of the spectra increases and the splitting effect of the elliptic flow decreases. These phenomena may provide a way to differentiate whether the influences on boson and anti-boson in the medium are consistent.

我们研究了玻色子和反玻色子的中间质量分裂对它们的光谱和椭圆流的影响。中间质量分裂可能会导致玻色子和反玻色子的横动量谱分离,以及椭圆流的分裂。这种影响的程度会随着中间质量分裂的增加而增大。随着速度的增加,光谱的分裂效应也会增加,而椭圆流的分裂效应则会减弱。这些现象可能为区分介质中玻色子和反玻色子的影响是否一致提供了一种方法。
{"title":"Squeezed spectra and elliptic flow of bosons and anti-bosons with in-medium mass splitting","authors":"Yong Zhang, Shi-Yao Wang, Peng Ru, Wei-Hua Wu","doi":"10.1142/s0218301323500702","DOIUrl":"https://doi.org/10.1142/s0218301323500702","url":null,"abstract":"<p>We study the impact of the in-medium mass splitting between bosons and anti-bosons on their spectra and elliptic flow. The in-medium mass splitting may cause a separation in the transverse momentum spectra, as well as a division in the elliptic flow between bosons and anti-bosons. The magnitude of this effect becomes greater as the in-medium mass splitting increases. With the increasing rapidity, the splitting effect of the spectra increases and the splitting effect of the elliptic flow decreases. These phenomena may provide a way to differentiate whether the influences on boson and anti-boson in the medium are consistent.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"86 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic and hydrodynamic characteristics of interacting system formed in relativistic heavy ion collisions 相对论重离子碰撞中形成的相互作用体系的热力学和流体力学特征
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2023-12-23 DOI: 10.1142/s0218301323500659
Xu-Hong Zhang, Hao-Ning Wang, Fu-Hu Liu, Khusniddin K. Olimov
<p>To study the energy-dependent characteristics of thermodynamic and hydrodynamic parameters, based on the framework of a multi-source thermal model, we analyze the soft transverse momentum (<span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span>) spectra of the charged particles (<span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><msup><mrow><mi>π</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mover accent="true"><mrow><mi>p</mi></mrow><mo>̄</mo></mover></math></span><span></span>, and <i>p</i>) produced in gold–gold (Au–Au) collisions at the center-of-mass energies <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>7</mn><mo>.</mo><mn>7</mn></math></span><span></span>, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200<span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>GeV from the STAR Collaboration and in lead–lead (Pb–Pb) collisions at <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mn>6</mn></math></span><span></span> and 5.02<span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mspace width=".17em"></mspace></math></span><span></span>TeV from the ALICE Collaboration. In the rest framework of emission source, the probability density function obeyed by meson momenta satisfies the Bose–Einstein distribution, and that obeyed by baryon momenta satisfies the Fermi–Dirac distribution. To simulate the <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of the charged particles, the kinetic freeze-out temperature <i>T</i> and transverse expansion velocity <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msub><mrow><mi>β</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of emission source are introduced into the relativistic ideal gas model. Our results, based on the Monte Carlo method for numerical calculation, show a good agreement with the experimental data. The excitation f
为了研究热力学和流体力学参数随能量变化的特性,我们在多源热模型的框架下,分析了在质量中心能量sNN=7的金-金(Au-Au)对撞中产生的带电粒子(π-、π+、K-、K+、p̄和p)的软横动量(pT)谱图,以及在质量中心能量sNN=7的铅-铅(Pb-Pb)对撞中产生的带电粒子(π-、π+、K-、K+、p̄和p)的软横动量(pT)谱图。7、11.5、14.5、19.6、27、39、62.4 和 200GeV 的金-金(Au-Au)对撞中产生的,以及在 sNN=2.76 和 5.02TeV 的铅-铅(Pb-Pb)对撞中产生的。在发射源的静态框架中,介子矩服从的概率密度函数满足玻色-爱因斯坦分布,重子矩服从的概率密度函数满足费米-狄拉克分布。为了模拟带电粒子的 pT,在相对论理想气体模型中引入了发射源的动力学冻结温度 T 和横向膨胀速度 βT。我们采用蒙特卡洛方法进行数值计算,结果与实验数据非常吻合。分析结果表明,在不同中心度的对撞中,热力学参数 T 和流体力学参数 βT 的激发函数呈从 7.7GeV 到 5.02TeV 的递增趋势。
{"title":"Thermodynamic and hydrodynamic characteristics of interacting system formed in relativistic heavy ion collisions","authors":"Xu-Hong Zhang, Hao-Ning Wang, Fu-Hu Liu, Khusniddin K. Olimov","doi":"10.1142/s0218301323500659","DOIUrl":"https://doi.org/10.1142/s0218301323500659","url":null,"abstract":"&lt;p&gt;To study the energy-dependent characteristics of thermodynamic and hydrodynamic parameters, based on the framework of a multi-source thermal model, we analyze the soft transverse momentum (&lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) spectra of the charged particles (&lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, and &lt;i&gt;p&lt;/i&gt;) produced in gold–gold (Au–Au) collisions at the center-of-mass energies &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200&lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;GeV from the STAR Collaboration and in lead–lead (Pb–Pb) collisions at &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msqrt&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msqrt&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;mn&gt;6&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and 5.02&lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mspace width=\".17em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;TeV from the ALICE Collaboration. In the rest framework of emission source, the probability density function obeyed by meson momenta satisfies the Bose–Einstein distribution, and that obeyed by baryon momenta satisfies the Fermi–Dirac distribution. To simulate the &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; of the charged particles, the kinetic freeze-out temperature &lt;i&gt;T&lt;/i&gt; and transverse expansion velocity &lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;β&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; of emission source are introduced into the relativistic ideal gas model. Our results, based on the Monte Carlo method for numerical calculation, show a good agreement with the experimental data. The excitation f","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"60 1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Open charm mesons and charmonium states in magnetized strange hadronic medium at finite temperature 有限温度下磁化奇异强子介质中的开放粲介子和粲态
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2023-12-23 DOI: 10.1142/s0218301323500635
Amal Jahan C. S., Amruta Mishra
<p>In this paper, we investigate the masses of the pseudoscalar (<span><math altimg="eq-00001.gif" display="inline" overflow="scroll"><mi>D</mi></math></span><span></span>(<span><math altimg="eq-00002.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span><span></span>, <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>), <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mover accent="true"><mrow><mi>D</mi></mrow><mo>̄</mo></mover></math></span><span></span>(<span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mover accent="true"><mrow><msup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msup></mrow><mo>̄</mo></mover></math></span><span></span>, <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>) and vector open charm mesons (<span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span><span></span>(<span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>∗</mo><mn>0</mn></mrow></msup></math></span><span></span>, <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>∗</mo><mo>+</mo></mrow></msup></math></span><span></span>), <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><msup><mrow><mover accent="true"><mrow><mi>D</mi></mrow><mo>̄</mo></mover></mrow><mrow><mo>∗</mo></mrow></msup></math></span><span></span>(<span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><msup><mrow><mover accent="true"><mrow><mi>D</mi></mrow><mo>̄</mo></mover></mrow><mrow><mo>∗</mo><mn>0</mn></mrow></msup></math></span><span></span>, <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msup><mrow><mi>D</mi></mrow><mrow><mo>∗</mo><mo>−</mo></mrow></msup></math></span><span></span>) as well as the pseudoscalar (<span><math altimg="eq-00013.gif" display="inline" overflow="scroll"><msub><mrow><mi>η</mi></mrow><mrow><mi>c</mi></mrow></msub><mo stretchy="false">(</mo><mn>1</mn><mi>S</mi><mo stretchy="false">)</mo></math></span><span></span>, <span><math altimg="eq-00014.gif" display="inline" overflow="scroll"><msub><mrow><mi>η</mi></mrow><mrow><mi>c</mi></mrow></msub><mo stretchy="false">(</mo><mn>2</mn><mi>S</mi><mo stretchy="false">)</mo></math></span><span></span>) and the vector charmonium states (<span><math altimg="eq-00015.gif" display="inline" overflow="scroll"><mi>J</mi><mo stretchy="false">∕</mo><mi>ψ</mi></math></span><span></span>, <span><math altimg="eq-00016.gif" display="inline" overflow="scroll"><mi>ψ</mi><mo stretchy="false">(</mo><mn>2</mn><mi>S</mi><mo stretchy="false">)</mo></math></span><span></span>, <span><math altimg="e
本文研究了伪高子(D(D0, D+),D̄(D0̄, D-)和矢量开放符介子(D∗(D∗0, D∗+),D̄∗(D̄∗0, D∗-)以及伪高子(ηc(1S)、ηc(2S))和矢量粲态(J∕ψ, ψ(2S), ψ(1D))。在磁化介质中,我们在手性有效模型中研究了开放符介子由于与重子和标量场(σ、ζ和δ)相互作用而产生的质量变化。此外,由于朗道量子化的作用,带电伪谱介子(D±)和带电矢量介子的纵向分量(D∗±∥)在磁场中经历了额外的正质量修正。在手性有效模型中还计算了稀拉顿场χ的介质变化所模拟的胶子凝聚物的修正对粲子质量的影响。在胶子凝聚物的修正中还考虑了轻夸克质量的贡献。在高温下,标量场的磁诱导修正会显著降低介子的中间质量。我们的研究通过现象学有效拉格朗日相互作用,将伪标量和相应矢量介子之间的磁诱导自旋混合效应纳入其中。在磁场存在的情况下,自旋混合导致矢量介子纵向分量的质量发生正偏移,而伪镜介子的质量发生负偏移。根据得到的粲介子和开放粲介子的中间质量,我们还利用轻夸克对产生模型,即3P0模型,计算了ψ(1D)到DD̄的部分衰变宽度。
{"title":"Open charm mesons and charmonium states in magnetized strange hadronic medium at finite temperature","authors":"Amal Jahan C. S., Amruta Mishra","doi":"10.1142/s0218301323500635","DOIUrl":"https://doi.org/10.1142/s0218301323500635","url":null,"abstract":"&lt;p&gt;In this paper, we investigate the masses of the pseudoscalar (&lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;(&lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;), &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;(&lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) and vector open charm mesons (&lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;(&lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;), &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;(&lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mover accent=\"true\"&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mo&gt;̄&lt;/mo&gt;&lt;/mover&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;D&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;∗&lt;/mo&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) as well as the pseudoscalar (&lt;span&gt;&lt;math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;η&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) and the vector charmonium states (&lt;span&gt;&lt;math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;J&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;ψ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, &lt;span&gt;&lt;math altimg=\"e","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"281 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of midrapidity average transverse momentum of pions, kaons, protons and antiprotons in Au+Au collisions in (snn)1∕2= 7–39-GeV energy range from the beam energy scan program 波束能量扫描程序显示的 (snn)1∕2= 7-39-GeV 能量范围内 Au+Au 对撞中的小离子、高子、质子和反质子的中频平均横动量的演变情况
IF 1.1 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Pub Date : 2023-12-21 DOI: 10.1142/s0218301323500660
Khusniddin K. Olimov, Igor A. Lebedev, Boburbek J. Tukhtaev, Anastasiya I. Fedosimova, Fu-Hu Liu, Shokhida A. Khudoyberdieva, Shakhnoza Z. Kanokova
<p>The <span><math altimg="eq-00003.gif" display="inline" overflow="scroll"><mo stretchy="false">〈</mo><msub><mrow><mi>N</mi></mrow><mrow><mstyle><mtext mathvariant="normal">part</mtext></mstyle></mrow></msub><mo stretchy="false">〉</mo></math></span><span></span> dependencies of the experimental average transverse momentum, <span><math altimg="eq-00004.gif" display="inline" overflow="scroll"><mo stretchy="false">〈</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy="false">〉</mo></math></span><span></span>, of the charged pions, charged kaons, protons and antiprotons produced at midrapidity (<span><math altimg="eq-00005.gif" display="inline" overflow="scroll"><mi>|</mi><mi>y</mi><mi>|</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>1</mn></math></span><span></span>) in <span><math altimg="eq-00006.gif" display="inline" overflow="scroll"><mstyle><mtext mathvariant="normal">Au</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant="normal">Au</mtext></mstyle></math></span><span></span> collisions from the Beam Energy Scan (BES) program at the RHIC (Relativistic Heavy Ion Collider), measured by STAR Collaboration in the <span><math altimg="eq-00007.gif" display="inline" overflow="scroll"><msup><mrow><mo stretchy="false">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mo stretchy="false">)</mo></mrow><mrow><mn>1</mn><mo stretchy="false">∕</mo><mn>2</mn></mrow></msup><mo>=</mo><mn>7</mn></math></span><span></span>–39-GeV energy range, have been described quite well with the power-law model function. We have obtained <span><math altimg="eq-00008.gif" display="inline" overflow="scroll"><mn>0</mn><mo><</mo><mi>α</mi><mo stretchy="false">(</mo><mstyle><mtext mathvariant="normal">pion</mtext></mstyle><mo stretchy="false">)</mo><mo><</mo><mi>α</mi><mo stretchy="false">(</mo><mstyle><mtext mathvariant="normal">kaon</mtext></mstyle><mo stretchy="false">)</mo><mo><</mo><mi>α</mi><mo stretchy="false">(</mo><mo stretchy="false">(</mo><mstyle><mtext mathvariant="normal">anti</mtext></mstyle><mo stretchy="false">)</mo><mstyle><mtext mathvariant="normal">proton</mtext></mstyle><mo stretchy="false">)</mo><mo><</mo><mn>0</mn><mo>.</mo><mn>2</mn></math></span><span></span> inequality at all BES energies, indicating the clear mass ordering (dependence) of the power parameter <span><math altimg="eq-00009.gif" display="inline" overflow="scroll"><mi>α</mi></math></span><span></span>. On the whole, the exponent parameter <span><math altimg="eq-00010.gif" display="inline" overflow="scroll"><mi>α</mi></math></span><span></span> for the charged kaons as well as (anti)protons decreases noticeably with increasing <span><math altimg="eq-00011.gif" display="inline" overflow="scroll"><mstyle><mtext mathvariant="normal">Au</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant="normal">Au</mtext></mstyle></math></span><span></span> collision energy from <span><math altimg="eq-00012.gif" display="inline" overflow="scroll"><msup><m
带电质子、带电高子、质子和反质子在中速(|y|<0.1)时产生的Au+Au对撞中的带电质子、带电高子、质子和反质子的能量,用幂律模型函数进行了很好的描述。我们在所有 BES 能量下都得到了 0<α(先驱)<α(高子)<α((反质子)<0.2 不等式,表明幂参数 α 具有明显的质量排序(依赖性)。总的来说,带电高子和(反)质子的指数参数α随着 Au+Au 碰撞能量的增加而明显减小,从(snn)1∕2=7.7GeV 到(snn)1∕2=39GeV。在(snn)1∕2≈39GeV处观察到的带电高子参数α的能量(snn)依赖性的急剧变化,可能表明在(snn)1∕2≈39GeV左右的Au+Au对撞中带电高子的产生机制发生了重大变化。在(snn)1∕2≈20GeV左右观测到的带电质子参数α的(snn)1∕2依赖性的显著变化,与STAR协作组早先报告的在(snn)1∕2≈20GeV左右Au+Au对撞中粒子产生机制的可能变化是一致的。在(snn)1∕2=7-20GeV区域,α(质子)和α(反质子)之间以及(π+)和α(π-)之间出现了明显的间隙。在(snn)1∕2>20GeV区域,这些间隙随着(π+)≈α(π-)和α(质子)≈α(反质子)而减小并几乎消失。总之,关于所研究粒子种类的参数α的碰撞能量依赖性的发现,可以表明在(snn)1∕2≈20GeV左右的Au+Au碰撞中,核物质可能发生相变,进入QGP和强子的混合相。粒子和反粒子的参数α与(snn)1∕2之间的差异与反粒子和粒子的产量比以及粒子和反粒子的产生机制的差异有关。由此推断,指数参数α应该对粒子(系统)热化程度和粒子产生机制很敏感,它的急剧变化可能与核/重子物质中粒子产生机制的变化或/和相变有关。
{"title":"Evolution of midrapidity average transverse momentum of pions, kaons, protons and antiprotons in Au+Au collisions in (snn)1∕2= 7–39-GeV energy range from the beam energy scan program","authors":"Khusniddin K. Olimov, Igor A. Lebedev, Boburbek J. Tukhtaev, Anastasiya I. Fedosimova, Fu-Hu Liu, Shokhida A. Khudoyberdieva, Shakhnoza Z. Kanokova","doi":"10.1142/s0218301323500660","DOIUrl":"https://doi.org/10.1142/s0218301323500660","url":null,"abstract":"&lt;p&gt;The &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;〈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;part&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;〉&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; dependencies of the experimental average transverse momentum, &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;〈&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;〉&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, of the charged pions, charged kaons, protons and antiprotons produced at midrapidity (&lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;|&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;|&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;) in &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Au&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Au&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; collisions from the Beam Energy Scan (BES) program at the RHIC (Relativistic Heavy Ion Collider), measured by STAR Collaboration in the &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;s&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;∕&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;7&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;–39-GeV energy range, have been described quite well with the power-law model function. We have obtained &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;pion&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;kaon&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;anti&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;proton&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; inequality at all BES energies, indicating the clear mass ordering (dependence) of the power parameter &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;. On the whole, the exponent parameter &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;α&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; for the charged kaons as well as (anti)protons decreases noticeably with increasing &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Au&lt;/mtext&gt;&lt;/mstyle&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;mstyle&gt;&lt;mtext mathvariant=\"normal\"&gt;Au&lt;/mtext&gt;&lt;/mstyle&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; collision energy from &lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;m","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":"82 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Modern Physics E
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1