{"title":"Ranking of CMIP 6 climate models in simulating precipitation over India","authors":"Degavath Vinod, V. Agilan","doi":"10.1007/s11600-024-01313-7","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding how precipitation fluctuates geographically and temporally over a specific place due to climate change is critical. Generally, simulations of general circulation models (GCM) under different scenarios are downscaled to the local scale to study the impact of climate change on precipitation. However, selecting suitable GCMs for the given study area is one of the most hectic tasks, as the performance of GCMs may vary with respect to space and timescale. Therefore, the current study ranks twenty-seven CMIP 6 (Coupled Modelled Intercomparison Project Phase 6) GCMs in simulating precipitation over India for nine times series, including daily, monthly, yearly, and six extreme series extracted with annual maximum and peak over threshold methods. The gridded daily rainfall data provided by the India Meteorological Department (IMD) are used as the observed data. The GCMs' outputs are corrected for the systematic bias using the linear scaling method. The performance of a GCM is assessed with three statistical performance metrics, namely NSE, RMSE, and <i>R</i><sup>2</sup>. The GCMs' ranks are determined using a multi-criterion decision-making technique named the modified technique of order preference by similarity to an ideal solution (mTOPSIS) for every grid point and nine timescales (i.e., daily, monthly, yearly, and six extreme series). From the results, for the entire India, the top ten recommended CMIP 6 GCMs are FGOALS-g3, HadGEM3-GC31-MM, EC-Earth3, BCC-CSM2-MR, CNRM-CM6-1-HR, CanESM5, AWI-ESM-1-1-LR, MPI-ESM-1-2-HR, IITM-ESM, and INM-CM5-0. The identified best-performing models provide insightful information for better regional climate projections and underscore the necessity of considering multiple model outputs for reliable climate change impact assessments and adaptation strategies in the region.</p></div>","PeriodicalId":6988,"journal":{"name":"Acta Geophysica","volume":"72 5","pages":"3703 - 3717"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11600-024-01313-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how precipitation fluctuates geographically and temporally over a specific place due to climate change is critical. Generally, simulations of general circulation models (GCM) under different scenarios are downscaled to the local scale to study the impact of climate change on precipitation. However, selecting suitable GCMs for the given study area is one of the most hectic tasks, as the performance of GCMs may vary with respect to space and timescale. Therefore, the current study ranks twenty-seven CMIP 6 (Coupled Modelled Intercomparison Project Phase 6) GCMs in simulating precipitation over India for nine times series, including daily, monthly, yearly, and six extreme series extracted with annual maximum and peak over threshold methods. The gridded daily rainfall data provided by the India Meteorological Department (IMD) are used as the observed data. The GCMs' outputs are corrected for the systematic bias using the linear scaling method. The performance of a GCM is assessed with three statistical performance metrics, namely NSE, RMSE, and R2. The GCMs' ranks are determined using a multi-criterion decision-making technique named the modified technique of order preference by similarity to an ideal solution (mTOPSIS) for every grid point and nine timescales (i.e., daily, monthly, yearly, and six extreme series). From the results, for the entire India, the top ten recommended CMIP 6 GCMs are FGOALS-g3, HadGEM3-GC31-MM, EC-Earth3, BCC-CSM2-MR, CNRM-CM6-1-HR, CanESM5, AWI-ESM-1-1-LR, MPI-ESM-1-2-HR, IITM-ESM, and INM-CM5-0. The identified best-performing models provide insightful information for better regional climate projections and underscore the necessity of considering multiple model outputs for reliable climate change impact assessments and adaptation strategies in the region.
期刊介绍:
Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.