Machine and deep learning methods for predicting 3D genome organization

Brydon P. G. Wall, My Nguyen, J. Chuck Harrell, Mikhail G. Dozmorov
{"title":"Machine and deep learning methods for predicting 3D genome organization","authors":"Brydon P. G. Wall, My Nguyen, J. Chuck Harrell, Mikhail G. Dozmorov","doi":"arxiv-2403.03231","DOIUrl":null,"url":null,"abstract":"Three-Dimensional (3D) chromatin interactions, such as enhancer-promoter\ninteractions (EPIs), loops, Topologically Associating Domains (TADs), and A/B\ncompartments play critical roles in a wide range of cellular processes by\nregulating gene expression. Recent development of chromatin conformation\ncapture technologies has enabled genome-wide profiling of various 3D\nstructures, even with single cells. However, current catalogs of 3D structures\nremain incomplete and unreliable due to differences in technology, tools, and\nlow data resolution. Machine learning methods have emerged as an alternative to\nobtain missing 3D interactions and/or improve resolution. Such methods\nfrequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA\nsequencing information (k-mers, Transcription Factor Binding Site (TFBS)\nmotifs), and other genomic properties to learn the associations between genomic\nfeatures and chromatin interactions. In this review, we discuss computational\ntools for predicting three types of 3D interactions (EPIs, chromatin\ninteractions, TAD boundaries) and analyze their pros and cons. We also point\nout obstacles of computational prediction of 3D interactions and suggest future\nresearch directions.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.03231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-Dimensional (3D) chromatin interactions, such as enhancer-promoter interactions (EPIs), loops, Topologically Associating Domains (TADs), and A/B compartments play critical roles in a wide range of cellular processes by regulating gene expression. Recent development of chromatin conformation capture technologies has enabled genome-wide profiling of various 3D structures, even with single cells. However, current catalogs of 3D structures remain incomplete and unreliable due to differences in technology, tools, and low data resolution. Machine learning methods have emerged as an alternative to obtain missing 3D interactions and/or improve resolution. Such methods frequently use genome annotation data (ChIP-seq, DNAse-seq, etc.), DNA sequencing information (k-mers, Transcription Factor Binding Site (TFBS) motifs), and other genomic properties to learn the associations between genomic features and chromatin interactions. In this review, we discuss computational tools for predicting three types of 3D interactions (EPIs, chromatin interactions, TAD boundaries) and analyze their pros and cons. We also point out obstacles of computational prediction of 3D interactions and suggest future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测三维基因组组织的机器学习和深度学习方法
三维(3D)染色质相互作用,如增强子-启动子相互作用(EPIs)、环路、拓扑关联区(TADs)和A/B区,通过调控基因表达在广泛的细胞过程中发挥着关键作用。染色质构象捕获技术的最新发展使得各种三维结构的全基因组剖析成为可能,即使是单细胞也不例外。然而,由于技术、工具和数据分辨率的差异,目前的三维结构目录仍然不完整、不可靠。机器学习方法已成为获取缺失的三维相互作用和/或提高分辨率的替代方法。这类方法通常使用基因组注释数据(ChIP-seq、DNAse-seq 等)、DNA 测序信息(k-mers、转录因子结合位点(TFBS)motifs)和其他基因组属性来学习基因组特征与染色质相互作用之间的关联。在这篇综述中,我们讨论了预测三种三维相互作用(EPIs、染色质相互作用、TAD边界)的计算工具,并分析了它们的优缺点。我们还指出了三维相互作用计算预测的障碍,并提出了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1