Advancements in practical k-mer sets: essentials for the curious

Camille Marchet
{"title":"Advancements in practical k-mer sets: essentials for the curious","authors":"Camille Marchet","doi":"arxiv-2409.05210","DOIUrl":null,"url":null,"abstract":"This paper provides a comprehensive survey of data structures for\nrepresenting k-mer sets, which are fundamental in high-throughput sequencing\nanalysis. It categorizes the methods into two main strategies: those using\nfingerprinting and hashing for compact storage, and those leveraging\nlexicographic properties for efficient representation. The paper reviews key\noperations supported by these structures, such as membership queries and\ndynamic updates, and highlights recent advancements in memory efficiency and\nquery speed. A companion paper explores colored k-mer sets, which extend these\nconcepts to integrate multiple datasets or genomes.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a comprehensive survey of data structures for representing k-mer sets, which are fundamental in high-throughput sequencing analysis. It categorizes the methods into two main strategies: those using fingerprinting and hashing for compact storage, and those leveraging lexicographic properties for efficient representation. The paper reviews key operations supported by these structures, such as membership queries and dynamic updates, and highlights recent advancements in memory efficiency and query speed. A companion paper explores colored k-mer sets, which extend these concepts to integrate multiple datasets or genomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实用 k-mer 集的进展:好奇者的必备知识
本文全面考察了表示 k-mer 集的数据结构,k-mer 集是高通量测序分析的基础。它将这些方法分为两种主要策略:一种是使用指纹和散列进行紧凑存储,另一种是利用反射特性进行高效表示。论文回顾了这些结构所支持的关键操作,如成员查询和动态更新,并重点介绍了内存效率和查询速度方面的最新进展。另一篇论文探讨了彩色 k-mer 集,它扩展了这些概念以整合多个数据集或基因组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Allium Vegetables Intake and Digestive System Cancer Risk: A Study Based on Mendelian Randomization, Network Pharmacology and Molecular Docking wgatools: an ultrafast toolkit for manipulating whole genome alignments Selecting Differential Splicing Methods: Practical Considerations Advancements in colored k-mer sets: essentials for the curious Advancements in practical k-mer sets: essentials for the curious
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1