Statistical Study of the Bias and Precision for Six Estimation Methods for the Fractal Dimension of Randomly Rough Surfaces

Jorge Luis Flores Alarcón, C. G. Figueroa, V. H. Jacobo, Fernando Velázquez Villegas, R. Schouwenaars
{"title":"Statistical Study of the Bias and Precision for Six Estimation Methods for the Fractal Dimension of Randomly Rough Surfaces","authors":"Jorge Luis Flores Alarcón, C. G. Figueroa, V. H. Jacobo, Fernando Velázquez Villegas, R. Schouwenaars","doi":"10.3390/fractalfract8030152","DOIUrl":null,"url":null,"abstract":"The simulation and characterisation of randomly rough surfaces is an important topic in surface science, tribology, geo- and planetary sciences, image analysis and optics. Extensions to general random processes with two continuous variables are straightforward. Several surface generation algorithms are available, and preference for one or another method often depends on the specific scientific field. The same holds for the methods to estimate the fractal dimension D. This work analyses six algorithms for the determination of D as a function of the size of the domain, variance, and the input value for D, using surfaces generated by Fourier filtering techniques and the random midpoint displacement algorithm. Several of the methods to determine fractal dimension are needlessly complex and severely biased, whereas simple and computationally efficient methods produce better results. A fine-tuned analysis of the power spectral density is very precise and shows how the different surface generation algorithms deviate from ideal fractal behaviour. For large datasets defined on equidistant two-dimensional grids, it is clearly the most sensitive and precise method to determine fractal dimension.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"69 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8030152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation and characterisation of randomly rough surfaces is an important topic in surface science, tribology, geo- and planetary sciences, image analysis and optics. Extensions to general random processes with two continuous variables are straightforward. Several surface generation algorithms are available, and preference for one or another method often depends on the specific scientific field. The same holds for the methods to estimate the fractal dimension D. This work analyses six algorithms for the determination of D as a function of the size of the domain, variance, and the input value for D, using surfaces generated by Fourier filtering techniques and the random midpoint displacement algorithm. Several of the methods to determine fractal dimension are needlessly complex and severely biased, whereas simple and computationally efficient methods produce better results. A fine-tuned analysis of the power spectral density is very precise and shows how the different surface generation algorithms deviate from ideal fractal behaviour. For large datasets defined on equidistant two-dimensional grids, it is clearly the most sensitive and precise method to determine fractal dimension.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机粗糙表面分形维度六种估算方法的偏差和精度统计研究
随机粗糙表面的模拟和表征是表面科学、摩擦学、地质和行星科学、图像分析和光学领域的一个重要课题。将其扩展到具有两个连续变量的一般随机过程非常简单。目前有多种表面生成算法,选择哪种方法往往取决于具体的科学领域。本研究利用傅里叶滤波技术和随机中点位移算法生成的曲面,分析了六种确定分形维度 D 的算法,这些算法是域大小、方差和输入值 D 的函数。有几种确定分形维度的方法过于复杂,严重偏差,而简单且计算效率高的方法则能得到更好的结果。对功率谱密度的微调分析非常精确,显示了不同的曲面生成算法如何偏离理想的分形行为。对于在等距二维网格上定义的大型数据集,这显然是确定分形维度的最灵敏、最精确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions Calculation of the Relaxation Modulus in the Andrade Model by Using the Laplace Transform Morphological Features of Mathematical and Real-World Fractals: A Survey An Application of Multiple Erdélyi–Kober Fractional Integral Operators to Establish New Inequalities Involving a General Class of Functions Semi-Regular Continued Fractions with Fast-Growing Partial Quotients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1