SleepNet

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-03-06 DOI:10.1145/3643508
Maryam Khalid, E. Klerman, A. McHill, A. Phillips, Akane Sano
{"title":"SleepNet","authors":"Maryam Khalid, E. Klerman, A. McHill, A. Phillips, Akane Sano","doi":"10.1145/3643508","DOIUrl":null,"url":null,"abstract":"Sleep behavior significantly impacts health and acts as an indicator of physical and mental well-being. Monitoring and predicting sleep behavior with ubiquitous sensors may therefore assist in both sleep management and tracking of related health conditions. While sleep behavior depends on, and is reflected in the physiology of a person, it is also impacted by external factors such as digital media usage, social network contagion, and the surrounding weather. In this work, we propose SleepNet, a system that exploits social contagion in sleep behavior through graph networks and integrates it with physiological and phone data extracted from ubiquitous mobile and wearable devices for predicting next-day sleep labels about sleep duration. Our architecture overcomes the limitations of large-scale graphs containing connections irrelevant to sleep behavior by devising an attention mechanism. The extensive experimental evaluation highlights the improvement provided by incorporating social networks in the model. Additionally, we conduct robustness analysis to demonstrate the system's performance in real-life conditions. The outcomes affirm the stability of SleepNet against perturbations in input data. Further analyses emphasize the significance of network topology in prediction performance revealing that users with higher eigenvalue centrality are more vulnerable to data perturbations.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3643508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Sleep behavior significantly impacts health and acts as an indicator of physical and mental well-being. Monitoring and predicting sleep behavior with ubiquitous sensors may therefore assist in both sleep management and tracking of related health conditions. While sleep behavior depends on, and is reflected in the physiology of a person, it is also impacted by external factors such as digital media usage, social network contagion, and the surrounding weather. In this work, we propose SleepNet, a system that exploits social contagion in sleep behavior through graph networks and integrates it with physiological and phone data extracted from ubiquitous mobile and wearable devices for predicting next-day sleep labels about sleep duration. Our architecture overcomes the limitations of large-scale graphs containing connections irrelevant to sleep behavior by devising an attention mechanism. The extensive experimental evaluation highlights the improvement provided by incorporating social networks in the model. Additionally, we conduct robustness analysis to demonstrate the system's performance in real-life conditions. The outcomes affirm the stability of SleepNet against perturbations in input data. Further analyses emphasize the significance of network topology in prediction performance revealing that users with higher eigenvalue centrality are more vulnerable to data perturbations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
睡眠网
睡眠行为对健康有重大影响,是身心健康的一个指标。因此,利用无处不在的传感器监测和预测睡眠行为可能有助于睡眠管理和跟踪相关的健康状况。虽然睡眠行为取决于人的生理机能并在生理机能中得到反映,但它也受到数字媒体使用、社交网络传染和周围天气等外部因素的影响。在这项工作中,我们提出了 "睡眠网"(SleepNet)系统,该系统通过图网络利用睡眠行为中的社交传染,并将其与从无处不在的移动和可穿戴设备中提取的生理和电话数据相整合,以预测次日有关睡眠时间长短的睡眠标签。我们的架构通过设计一种关注机制,克服了包含与睡眠行为无关的连接的大规模图的局限性。广泛的实验评估凸显了将社交网络纳入模型所带来的改进。此外,我们还进行了鲁棒性分析,以证明系统在现实生活中的性能。结果证实了 SleepNet 在输入数据扰动下的稳定性。进一步的分析强调了网络拓扑结构在预测性能中的重要性,揭示了特征值中心性越高的用户越容易受到数据扰动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Talk2Care: An LLM-based Voice Assistant for Communication between Healthcare Providers and Older Adults A Digital Companion Architecture for Ambient Intelligence Waving Hand as Infrared Source for Ubiquitous Gas Sensing PPG-Hear: A Practical Eavesdropping Attack with Photoplethysmography Sensors User-directed Assembly Code Transformations Enabling Efficient Batteryless Arduino Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1