Integrating Novel Machine Learning for Big Data Analytics and IoT Technology in Intelligent Database Management Systems

Rosa Clavijo-López, Dr. Wayky Alfredo Luy Navarrete, Dr. Jesús Merino Velásquez, Dr. Carlos Miguel Aguilar Saldaña, Alcides Muñoz Ocas, Dr. César Augusto Flores Tananta
{"title":"Integrating Novel Machine Learning for Big Data Analytics and IoT Technology in Intelligent Database Management Systems","authors":"Rosa Clavijo-López, Dr. Wayky Alfredo Luy Navarrete, Dr. Jesús Merino Velásquez, Dr. Carlos Miguel Aguilar Saldaña, Alcides Muñoz Ocas, Dr. César Augusto Flores Tananta","doi":"10.58346/jisis.2024.i1.014","DOIUrl":null,"url":null,"abstract":"Database Management Systems (DBMS) advancement has been crucial to Information Technology (IT). Traditional DBMS needed help managing large and varied datasets under strict time constraints due to the emergence of Big Data and the widespread use of Internet of Things (IoT) devices. The growing intricacy of data and the need for instantaneous processing presented substantial obstacles. This research suggests a Machine Learning-based Intelligent Database Management Systems (ML-IDMS) technique. This invention combines the skills of Machine Learning with DBMS, improving flexibility and decision-making capacities. The ML-IDMS is specifically developed to tackle current obstacles by providing capabilities such as instantaneous data retrieval, intelligent heat measurement, and effective neural network initialization. The simulation results showcase the effectiveness of ML-IDMS, as shown by impressive metrics such as query execution time (19.27 sec), storage efficiency (83.78%), data accuracy (90%), redundancy reduction (66.42%), network throughput (7.93 Gbps), and end-to-end delay (14.4 ms). The results highlight the efficacy of ML-IDMS in managing various data circumstances. ML-IDMS addresses current obstacles and establishes a standard for future intelligent data management and analytics progress.","PeriodicalId":36718,"journal":{"name":"Journal of Internet Services and Information Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Internet Services and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58346/jisis.2024.i1.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Database Management Systems (DBMS) advancement has been crucial to Information Technology (IT). Traditional DBMS needed help managing large and varied datasets under strict time constraints due to the emergence of Big Data and the widespread use of Internet of Things (IoT) devices. The growing intricacy of data and the need for instantaneous processing presented substantial obstacles. This research suggests a Machine Learning-based Intelligent Database Management Systems (ML-IDMS) technique. This invention combines the skills of Machine Learning with DBMS, improving flexibility and decision-making capacities. The ML-IDMS is specifically developed to tackle current obstacles by providing capabilities such as instantaneous data retrieval, intelligent heat measurement, and effective neural network initialization. The simulation results showcase the effectiveness of ML-IDMS, as shown by impressive metrics such as query execution time (19.27 sec), storage efficiency (83.78%), data accuracy (90%), redundancy reduction (66.42%), network throughput (7.93 Gbps), and end-to-end delay (14.4 ms). The results highlight the efficacy of ML-IDMS in managing various data circumstances. ML-IDMS addresses current obstacles and establishes a standard for future intelligent data management and analytics progress.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在智能数据库管理系统中整合用于大数据分析的新型机器学习和物联网技术
数据库管理系统(DBMS)的发展对信息技术(IT)至关重要。由于大数据的出现和物联网(IoT)设备的广泛使用,传统的 DBMS 需要在严格的时间限制下帮助管理大量不同的数据集。数据的日益复杂性和对即时处理的需求带来了巨大障碍。本研究提出了一种基于机器学习的智能数据库管理系统(ML-IDMS)技术。这项发明将机器学习技术与数据库管理系统相结合,提高了灵活性和决策能力。ML-IDMS 通过提供瞬时数据检索、智能热量测量和有效的神经网络初始化等功能,专为解决当前障碍而开发。仿真结果显示了 ML-IDMS 的有效性,查询执行时间(19.27 秒)、存储效率(83.78%)、数据准确率(90%)、冗余减少率(66.42%)、网络吞吐量(7.93 Gbps)和端到端延迟(14.4 毫秒)等指标都令人印象深刻。这些结果凸显了 ML-IDMS 在管理各种数据环境方面的功效。ML-IDMS 解决了当前的障碍,并为未来智能数据管理和分析的发展建立了标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Internet Services and Information Security
Journal of Internet Services and Information Security Computer Science-Computer Science (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Evaluating the Effectiveness of a Gan Fingerprint Removal Approach in Fooling Deepfake Face Detection CSA-Forecaster: Stacked Model for Forecasting Child Sexual Abuse A Nonredundant SVD-based Precoding Matrix for Blind Channel Estimation in CP-OFDM Systems Over Channels with Memory An Intelligent Health Surveillance System: Predictive Modeling of Cardiovascular Parameters through Machine Learning Algorithms Using LoRa Communication and Internet of Medical Things (IoMT) Identifying Large Young Hacker Concentration in Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1