Unlocking the Potential of AI/ML in DevSecOps: Effective Strategies and Optimal Practices

Nicolas Guzman Camacho
{"title":"Unlocking the Potential of AI/ML in DevSecOps: Effective Strategies and Optimal Practices","authors":"Nicolas Guzman Camacho","doi":"10.60087/jaigs.v2i1.p89","DOIUrl":null,"url":null,"abstract":"In the dynamic realm of technology, the fusion of Artificial Intelligence (AI) and Machine Learning (ML) with DevSecOps practices stands out as a pivotal catalyst for bolstering security, efficiency, and innovation in software development and deployment processes. This document explores effective strategies and optimal practices for maximizing the capabilities of AI/ML within the DevSecOps framework. Commencing with an overview of DevSecOps principles and the integral role of AI/ML, the document delves into specific tactics such as automated threat detection, predictive analytics for vulnerability management, and intelligent automation for continuous integration and deployment. Additionally, it addresses prominent challenges and considerations associated with the integration of AI/ML in DevSecOps, including data privacy, algorithm transparency, and ethical implications. Through illuminating case studies and real-world illustrations, the document showcases how organizations can leverage AI/ML technologies to streamline their DevSecOps pipelines, mitigate security risks, and cultivate a culture of ongoing enhancement. By embracing these strategies and adhering to best practices, organizations can harness the full potential of AI/ML to propel innovation, fortify resilience, and enhance agility in their DevSecOps endeavors.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"53 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v2i1.p89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the dynamic realm of technology, the fusion of Artificial Intelligence (AI) and Machine Learning (ML) with DevSecOps practices stands out as a pivotal catalyst for bolstering security, efficiency, and innovation in software development and deployment processes. This document explores effective strategies and optimal practices for maximizing the capabilities of AI/ML within the DevSecOps framework. Commencing with an overview of DevSecOps principles and the integral role of AI/ML, the document delves into specific tactics such as automated threat detection, predictive analytics for vulnerability management, and intelligent automation for continuous integration and deployment. Additionally, it addresses prominent challenges and considerations associated with the integration of AI/ML in DevSecOps, including data privacy, algorithm transparency, and ethical implications. Through illuminating case studies and real-world illustrations, the document showcases how organizations can leverage AI/ML technologies to streamline their DevSecOps pipelines, mitigate security risks, and cultivate a culture of ongoing enhancement. By embracing these strategies and adhering to best practices, organizations can harness the full potential of AI/ML to propel innovation, fortify resilience, and enhance agility in their DevSecOps endeavors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 DevSecOps 中释放 AI/ML 的潜力:有效策略和最佳实践
在充满活力的技术领域,人工智能(AI)和机器学习(ML)与 DevSecOps 实践的融合是加强软件开发和部署流程的安全性、效率和创新的关键催化剂。本文档探讨了在 DevSecOps 框架内最大限度发挥人工智能/ML 功能的有效策略和最佳实践。文件首先概述了 DevSecOps 原则和 AI/ML 的重要作用,然后深入探讨了具体策略,如自动威胁检测、用于漏洞管理的预测分析以及用于持续集成和部署的智能自动化。此外,它还讨论了与 DevSecOps 中集成 AI/ML 相关的突出挑战和注意事项,包括数据隐私、算法透明度和道德影响。通过富有启发性的案例研究和实际说明,该文件展示了企业如何利用 AI/ML 技术来简化 DevSecOps 流程、降低安全风险并培养持续改进的文化。通过采用这些策略并遵循最佳实践,企业可以充分发挥人工智能/ML 的潜力,在其 DevSecOps 工作中推动创新、加强弹性并提高敏捷性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion Utilizing the Internet of Things (IoT), Artificial Intelligence, Machine Learning, and Vehicle Telematics for Sustainable Growth in Small and Medium Firms (SMEs) Role of Artificial Intelligence and Big Data in Sustainable Entrepreneurship Impact of AI on Education: Innovative Tools and Trends Critique of Modern Feminism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1