LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion

Mingxuan Zhang, Bo Yuan, Hanzhe Li, Kangming Xu
{"title":"LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion","authors":"Mingxuan Zhang, Bo Yuan, Hanzhe Li, Kangming Xu","doi":"10.60087/jaigs.v5i1.200","DOIUrl":null,"url":null,"abstract":"This paper introduces LLM-CloudComplete, a novel cloud-based system for efficient and scalable code completion leveraging large language models (LLMs). We address the challenges of deploying LLMs for real-time code completion by implementing a distributed inference architecture, adaptive resource allocation, and multi-level caching mechanisms. Our system utilizes a pipeline parallelism technique to distribute LLM layers across multiple GPU nodes, achieving near-linear scaling in throughput. We propose an adaptive resource allocation algorithm using reinforcement learning to optimize GPU utilization under varying workloads. A similarity-based retrieval mechanism is implemented within a three-tier caching system to reduce computational load and improve response times. \nAdditionally, we introduce several latency reduction strategies, including predictive prefetching, incremental completion generation, and sparse attention optimization. Extensive evaluations on diverse programming languages demonstrate that LLM-CloudComplete outperforms existing state-of-the-art code completion systems, achieving a 7.4% improvement in Exact Match accuracy while reducing latency by 76.2% and increasing throughput by 320%. Our ablation studies reveal the significant contributions of each system component to overall performance. LLM-CloudComplete represents a substantial advancement in cloud-based AI-assisted software development, paving the way for more efficient and responsive coding tools. We discuss limitations and future research directions, including privacy-preserving techniques and adaptability to diverse programming paradigms.","PeriodicalId":517201,"journal":{"name":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","volume":"11 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.60087/jaigs.v5i1.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces LLM-CloudComplete, a novel cloud-based system for efficient and scalable code completion leveraging large language models (LLMs). We address the challenges of deploying LLMs for real-time code completion by implementing a distributed inference architecture, adaptive resource allocation, and multi-level caching mechanisms. Our system utilizes a pipeline parallelism technique to distribute LLM layers across multiple GPU nodes, achieving near-linear scaling in throughput. We propose an adaptive resource allocation algorithm using reinforcement learning to optimize GPU utilization under varying workloads. A similarity-based retrieval mechanism is implemented within a three-tier caching system to reduce computational load and improve response times. Additionally, we introduce several latency reduction strategies, including predictive prefetching, incremental completion generation, and sparse attention optimization. Extensive evaluations on diverse programming languages demonstrate that LLM-CloudComplete outperforms existing state-of-the-art code completion systems, achieving a 7.4% improvement in Exact Match accuracy while reducing latency by 76.2% and increasing throughput by 320%. Our ablation studies reveal the significant contributions of each system component to overall performance. LLM-CloudComplete represents a substantial advancement in cloud-based AI-assisted software development, paving the way for more efficient and responsive coding tools. We discuss limitations and future research directions, including privacy-preserving techniques and adaptability to diverse programming paradigms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LLM-Cloud Complete:利用云计算实现基于大型语言模型的高效代码完成
本文介绍了 LLM-CloudComplete,这是一种基于云的新型系统,可利用大型语言模型(LLM)高效、可扩展地完成代码。我们通过实施分布式推理架构、自适应资源分配和多级缓存机制,解决了部署 LLMs 以完成实时代码的难题。我们的系统利用流水线并行技术将 LLM 层分布在多个 GPU 节点上,实现了接近线性的吞吐量扩展。我们提出了一种使用强化学习的自适应资源分配算法,以优化不同工作负载下的 GPU 利用率。我们在三层缓存系统中实施了基于相似性的检索机制,以减少计算负荷并改善响应时间。此外,我们还引入了几种减少延迟的策略,包括预测性预取、增量完成生成和稀疏注意力优化。在多种编程语言上进行的广泛评估表明,LLM-CloudComplete 的性能优于现有的最先进代码完成系统,在精确匹配准确率方面提高了 7.4%,同时将延迟降低了 76.2%,吞吐量提高了 320%。我们的消融研究揭示了每个系统组件对整体性能的重要贡献。LLM-CloudComplete 代表了基于云的人工智能辅助软件开发的重大进步,为更高效、响应更快的编码工具铺平了道路。我们讨论了局限性和未来的研究方向,包括隐私保护技术和对不同编程范式的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLM-Cloud Complete: Leveraging Cloud Computing for Efficient Large Language Model-based Code Completion Utilizing the Internet of Things (IoT), Artificial Intelligence, Machine Learning, and Vehicle Telematics for Sustainable Growth in Small and Medium Firms (SMEs) Role of Artificial Intelligence and Big Data in Sustainable Entrepreneurship Impact of AI on Education: Innovative Tools and Trends Critique of Modern Feminism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1