{"title":"Quasi-Periodic Traveling Waves on an Infinitely Deep Perfect Fluid Under Gravity","authors":"Filippo Giuliani, R. Feola","doi":"10.1090/memo/1471","DOIUrl":null,"url":null,"abstract":"We consider the gravity water waves system with a periodic one-dimensional interface in infinite depth and we establish the existence and the linear stability of small amplitude, quasi-periodic in time, traveling waves. This provides the first existence result of quasi-periodic water waves solutions bifurcating from a completely resonant elliptic fixed point. The proof is based on a Nash–Moser scheme, Birkhoff normal form methods and pseudo differential calculus techniques. We deal with the combined problems of small divisors and the fully-nonlinear nature of the equations.\n\nThe lack of parameters, like the capillarity or the depth of the ocean, demands a refined nonlinear bifurcation analysis involving several nontrivial resonant wave interactions, as the well-known “Benjamin-Feir resonances”. We develop a novel normal form approach to deal with that. Moreover, by making full use of the Hamiltonian structure, we are able to provide the existence of a wide class of solutions which are free from restrictions of parity in the time and space variables.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 3
Abstract
We consider the gravity water waves system with a periodic one-dimensional interface in infinite depth and we establish the existence and the linear stability of small amplitude, quasi-periodic in time, traveling waves. This provides the first existence result of quasi-periodic water waves solutions bifurcating from a completely resonant elliptic fixed point. The proof is based on a Nash–Moser scheme, Birkhoff normal form methods and pseudo differential calculus techniques. We deal with the combined problems of small divisors and the fully-nonlinear nature of the equations.
The lack of parameters, like the capillarity or the depth of the ocean, demands a refined nonlinear bifurcation analysis involving several nontrivial resonant wave interactions, as the well-known “Benjamin-Feir resonances”. We develop a novel normal form approach to deal with that. Moreover, by making full use of the Hamiltonian structure, we are able to provide the existence of a wide class of solutions which are free from restrictions of parity in the time and space variables.