Artificial Intelligence for Clinical Prediction: Exploring Key Domains and Essential Functions

Mohamed Khalifa , Mona Albadawy
{"title":"Artificial Intelligence for Clinical Prediction: Exploring Key Domains and Essential Functions","authors":"Mohamed Khalifa ,&nbsp;Mona Albadawy","doi":"10.1016/j.cmpbup.2024.100148","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Clinical prediction is integral to modern healthcare, leveraging current and historical medical data to forecast health outcomes. The integration of Artificial Intelligence (AI) in this field significantly enhances diagnostic accuracy, treatment planning, disease prevention, and personalised care leading to better patient outcomes and healthcare efficiency.</p></div><div><h3>Methods</h3><p>This systematic review implemented a structured four-step methodology, including an extensive literature search in academic databases (PubMed, Embase, Google Scholar), applying specific inclusion and exclusion criteria, data extraction focusing on AI techniques and their applications in clinical prediction, and a thorough analysis of the collected information to understand AI's roles in enhancing clinical prediction.</p></div><div><h3>Results</h3><p>Through the analysis of 74 experimental studies, eight key domains, where AI significantly enhances clinical prediction, were identified: (1) Diagnosis and early detection of disease; (2) Prognosis of disease course and outcomes; (3) Risk assessment of future disease; (4) Treatment response for personalised medicine; (5) Disease progression; (6) Readmission risks; (7) Complication risks; and (8) Mortality prediction. Oncology and radiology come on top of the specialties benefiting from AI in clinical prediction.</p></div><div><h3>Discussion</h3><p>The review highlights AI's transformative impact across various clinical prediction domains, including its role in revolutionising diagnostics, improving prognosis accuracy, aiding in personalised medicine, and enhancing patient safety. AI-driven tools contribute significantly to the efficiency and effectiveness of healthcare delivery.</p></div><div><h3>Conclusion and recommendations</h3><p>AI's integration in clinical prediction marks a substantial advancement in healthcare. Recommendations include enhancing data quality and accessibility, promoting interdisciplinary collaboration, focusing on ethical AI practices, investing in AI education, expanding clinical trials, developing regulatory oversight, involving patients in the AI integration process, and continuous monitoring and improvement of AI systems.</p></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"5 ","pages":"Article 100148"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666990024000156/pdfft?md5=25b89b60dd2d132f8cd31e3852e51d32&pid=1-s2.0-S2666990024000156-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990024000156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Clinical prediction is integral to modern healthcare, leveraging current and historical medical data to forecast health outcomes. The integration of Artificial Intelligence (AI) in this field significantly enhances diagnostic accuracy, treatment planning, disease prevention, and personalised care leading to better patient outcomes and healthcare efficiency.

Methods

This systematic review implemented a structured four-step methodology, including an extensive literature search in academic databases (PubMed, Embase, Google Scholar), applying specific inclusion and exclusion criteria, data extraction focusing on AI techniques and their applications in clinical prediction, and a thorough analysis of the collected information to understand AI's roles in enhancing clinical prediction.

Results

Through the analysis of 74 experimental studies, eight key domains, where AI significantly enhances clinical prediction, were identified: (1) Diagnosis and early detection of disease; (2) Prognosis of disease course and outcomes; (3) Risk assessment of future disease; (4) Treatment response for personalised medicine; (5) Disease progression; (6) Readmission risks; (7) Complication risks; and (8) Mortality prediction. Oncology and radiology come on top of the specialties benefiting from AI in clinical prediction.

Discussion

The review highlights AI's transformative impact across various clinical prediction domains, including its role in revolutionising diagnostics, improving prognosis accuracy, aiding in personalised medicine, and enhancing patient safety. AI-driven tools contribute significantly to the efficiency and effectiveness of healthcare delivery.

Conclusion and recommendations

AI's integration in clinical prediction marks a substantial advancement in healthcare. Recommendations include enhancing data quality and accessibility, promoting interdisciplinary collaboration, focusing on ethical AI practices, investing in AI education, expanding clinical trials, developing regulatory oversight, involving patients in the AI integration process, and continuous monitoring and improvement of AI systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能用于临床预测:探索关键领域和基本功能
背景临床预测是现代医疗保健不可或缺的一部分,它利用当前和历史医疗数据来预测健康结果。人工智能(AI)与这一领域的结合大大提高了诊断准确性、治疗计划、疾病预防和个性化护理,从而改善了患者的治疗效果,提高了医疗效率。方法本系统性综述采用了结构化的四步方法,包括在学术数据库(PubMed、Embase、Google Scholar)中进行广泛的文献检索,应用特定的纳入和排除标准,以人工智能技术及其在临床预测中的应用为重点进行数据提取,并对所收集的信息进行全面分析,以了解人工智能在增强临床预测中的作用。结果通过对 74 项实验研究的分析,确定了人工智能可显著增强临床预测的八个关键领域:(1) 疾病的诊断和早期检测;(2) 病程和结果的预后;(3) 未来疾病的风险评估;(4) 个性化医疗的治疗反应;(5) 疾病进展;(6) 再入院风险;(7) 并发症风险;以及 (8) 死亡率预测。肿瘤学和放射学在临床预测中受益于人工智能的专科中名列前茅。人工智能驱动的工具大大提高了医疗服务的效率和有效性。建议包括提高数据质量和可访问性、促进跨学科合作、关注人工智能伦理实践、投资人工智能教育、扩大临床试验、发展监管监督、让患者参与人工智能整合过程,以及持续监控和改进人工智能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Fostering digital health literacy to enhance trust and improve health outcomes Machine learning from real data: A mental health registry case study ResfEANet: ResNet-fused External Attention Network for Tuberculosis Diagnosis using Chest X-ray Images Role-playing recovery in social virtual worlds: Adult use of child avatars as PTSD therapy Comparative evaluation of low-cost 3D scanning devices for ear acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1