The in vitro scratch assay is a widely used assay in cell biology to assess the rate of wound closure related to a variety of therapeutic interventions. While manual measurement is subjective and vulnerable to intra- and interobserver variability, computer-based tools are theoretically objective, but in practice often contain parameters which are manually adjusted (individually per image or data set) and thereby provide a source for subjectivity. Modern deep learning approaches typically require large annotated training data which complicates instant applicability. In this paper, we deeply investigate the Segment Anything Model (SAM), a deep foundation model based on interactive point-prompts, which enables class-agnostic segmentation without tuning the network’s parameters based on any domain specific training data. With respect to segmentation accuracy, the interactive method significantly outperformed a semi-objective baseline that required manual inspection and, when necessary, parameter adjustments for each image. Experiments were conducted to evaluate the impact of variability due to interactive prompting. The results exhibited remarkably low intra- and interobserver variability, clearly surpassing the consistency of manual segmentation by domain experts. In addition, a fully automated zero-shot approach was explored, incorporating the self-supervised learning model DINOv2 as a preprocessing step before sampling input points for SAM, with various sampling methods systematically investigated.
扫码关注我们
求助内容:
应助结果提醒方式:
