Glycine betaine modulates extracellular polymeric substances to enhance microbial salinity tolerance

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Science and Ecotechnology Pub Date : 2024-03-01 DOI:10.1016/j.ese.2024.100406
Yan Xia , Xinbai Jiang , Shuaishuai Guo , Yuxuan Wang , Yang Mu , Jinyou Shen
{"title":"Glycine betaine modulates extracellular polymeric substances to enhance microbial salinity tolerance","authors":"Yan Xia ,&nbsp;Xinbai Jiang ,&nbsp;Shuaishuai Guo ,&nbsp;Yuxuan Wang ,&nbsp;Yang Mu ,&nbsp;Jinyou Shen","doi":"10.1016/j.ese.2024.100406","DOIUrl":null,"url":null,"abstract":"<div><p>High salinity inhibits microbial activity in the bioremediation of saline wastewater. To alleviate osmotic stress, glycine betaine (GB), an osmoprotectant, is added to enhance the secretion of extracellular polymeric substances (EPS). These EPS are pivotal in withstanding environmental stressors, yet the intricate interplay between GB supplementation and microbial responses through EPS modifications—encompassing composition, molecular architecture, and electrochemical features—remains elusive in hypersaline conditions. Here we show microbial strategies for salinity endurance by investigating the impact of GB on the dynamic alterations of EPS properties. Our findings reveal that GB supplementation at 3.5% salinity elevates the total EPS (T-EPS) content from 12.50 ± 0.05 to 24.58 ± 0.96 mg per g dry cell weight. The observed shift in zeta potential from −28.95 to −6.25 mV at 0% and 3.5% salinity, respectively, with GB treatment, indicates a reduction in electrostatic repulsion and compaction. Notably, the EPS protein secondary structure transition from <em>β</em>-sheet to <em>α</em>-helix, with GB addition, signifies a more compact protein configuration, less susceptible to salinity fluctuations. Electrochemical analyses, including cyclic voltammetry (CV) and differential pulse voltammetry (DPV), reveal GB's role in promoting the release of exogenous electron shuttles, such as flavins and c-type cytochromes (<em>c</em>-Cyts). The enhancement in DPV peak areas (<em>Q</em><sub>DPV</sub>) with GB addition implies an increase in available extracellular electron transfer sites. This investigation advances our comprehension of microbial adaptation mechanisms to salinity through EPS modifications facilitated by GB in saline habitats.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000206/pdfft?md5=6ec8c4a46884f6e00b0fb5a0a4e76aa0&pid=1-s2.0-S2666498424000206-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000206","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

High salinity inhibits microbial activity in the bioremediation of saline wastewater. To alleviate osmotic stress, glycine betaine (GB), an osmoprotectant, is added to enhance the secretion of extracellular polymeric substances (EPS). These EPS are pivotal in withstanding environmental stressors, yet the intricate interplay between GB supplementation and microbial responses through EPS modifications—encompassing composition, molecular architecture, and electrochemical features—remains elusive in hypersaline conditions. Here we show microbial strategies for salinity endurance by investigating the impact of GB on the dynamic alterations of EPS properties. Our findings reveal that GB supplementation at 3.5% salinity elevates the total EPS (T-EPS) content from 12.50 ± 0.05 to 24.58 ± 0.96 mg per g dry cell weight. The observed shift in zeta potential from −28.95 to −6.25 mV at 0% and 3.5% salinity, respectively, with GB treatment, indicates a reduction in electrostatic repulsion and compaction. Notably, the EPS protein secondary structure transition from β-sheet to α-helix, with GB addition, signifies a more compact protein configuration, less susceptible to salinity fluctuations. Electrochemical analyses, including cyclic voltammetry (CV) and differential pulse voltammetry (DPV), reveal GB's role in promoting the release of exogenous electron shuttles, such as flavins and c-type cytochromes (c-Cyts). The enhancement in DPV peak areas (QDPV) with GB addition implies an increase in available extracellular electron transfer sites. This investigation advances our comprehension of microbial adaptation mechanisms to salinity through EPS modifications facilitated by GB in saline habitats.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甘氨酸甜菜碱调节细胞外聚合物质,提高微生物的耐盐性
高盐度抑制了含盐废水生物修复中的微生物活性。为了减轻渗透压,需要添加渗透保护剂甘氨酸甜菜碱(GB),以增强细胞外高分子物质(EPS)的分泌。这些 EPS 对抵御环境压力至关重要,但在高盐度条件下,GB 的补充与微生物通过 EPS 的改变(包括成分、分子结构和电化学特征)做出的反应之间错综复杂的相互作用仍然难以捉摸。在这里,我们通过研究 GB 对 EPS 特性动态变化的影响,展示了微生物耐盐策略。我们的研究结果表明,在 3.5% 的盐度条件下补充 GB 可使每克干细胞重量的总 EPS(T-EPS)含量从 12.50 ± 0.05 毫克增至 24.58 ± 0.96 毫克。在 GB 处理下,观察到 zeta 电位在 0% 和 3.5% 盐度下分别从 -28.95 mV 变为 -6.25 mV,这表明静电排斥和压实作用减弱。值得注意的是,添加 GB 后,EPS 蛋白二级结构从 β 片状转变为 α 螺旋状,这表明蛋白质结构更加紧凑,不易受盐度波动的影响。电化学分析,包括循环伏安法(CV)和差分脉冲伏安法(DPV),揭示了 GB 在促进黄素和 c 型细胞色素(c-Cyts)等外源电子穿梭器释放方面的作用。加入 GB 后,DPV 峰面积(QDPV)的增加意味着可用的细胞外电子传递位点的增加。这项研究推动了我们对微生物适应盐度机制的理解,即在盐碱环境中通过 GB 促进 EPS 的改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
期刊最新文献
Enhanced removal of chiral emerging contaminants by an electroactive biofilter Peaking China's CO2 emissions by sectoral actions Synergetic strategies for carbon neutrality and clean air Optimizing soil conservation through comprehensive benefit assessment in river basins Piezocatalysis for water treatment: Mechanisms, recent advances, and future prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1