{"title":"New combined control strategy of on-board bidirectional battery chargers for electric vehicles","authors":"Khadidja Hadji, K. Hartani, T. Chikouche","doi":"10.11591/ijpeds.v15.i1.pp303-311","DOIUrl":null,"url":null,"abstract":"This paper aims to develop a bidirectional on-board battery charger for electric vehicles (EVs). The studied battery charger is composed of a bidirectional ac-dc converter as the first stage of conversion and a bidirectional dc-dc converter as the second stage. The first one is controlled by a predictive direct power control strategy based on a space vector modulation technique known as P-SVM-DPC, and the second is used to regulate the battery current and regulate the power direction flow by using a direct current control technique. The choice of its topology has taken into consideration the grid-to-vehicles (G2V) and vehicle-to-grid (V2G) power flow directions. During charging or discharging, the DC/DC converter acts likes a buck or boost converter. Using MATLAB/Simulink software, the performance of the battery charger is examined in various operating modes, such as fast charging and quick discharging.","PeriodicalId":355274,"journal":{"name":"International Journal of Power Electronics and Drive Systems (IJPEDS)","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power Electronics and Drive Systems (IJPEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijpeds.v15.i1.pp303-311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to develop a bidirectional on-board battery charger for electric vehicles (EVs). The studied battery charger is composed of a bidirectional ac-dc converter as the first stage of conversion and a bidirectional dc-dc converter as the second stage. The first one is controlled by a predictive direct power control strategy based on a space vector modulation technique known as P-SVM-DPC, and the second is used to regulate the battery current and regulate the power direction flow by using a direct current control technique. The choice of its topology has taken into consideration the grid-to-vehicles (G2V) and vehicle-to-grid (V2G) power flow directions. During charging or discharging, the DC/DC converter acts likes a buck or boost converter. Using MATLAB/Simulink software, the performance of the battery charger is examined in various operating modes, such as fast charging and quick discharging.