Forecasting and alert of atmospheric bioaerosol concentration profile based on adaptive genetic algorithm back propagation neural network, atmospheric parameter and fluorescence lidar

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment: X Pub Date : 2024-03-06 DOI:10.1016/j.aeaoa.2024.100248
Zhimin Rao, Yixiu Li, Yicheng Li, Jiandong Mao, Hu Zhao, Chunyan Zhou, Xin Gong
{"title":"Forecasting and alert of atmospheric bioaerosol concentration profile based on adaptive genetic algorithm back propagation neural network, atmospheric parameter and fluorescence lidar","authors":"Zhimin Rao,&nbsp;Yixiu Li,&nbsp;Yicheng Li,&nbsp;Jiandong Mao,&nbsp;Hu Zhao,&nbsp;Chunyan Zhou,&nbsp;Xin Gong","doi":"10.1016/j.aeaoa.2024.100248","DOIUrl":null,"url":null,"abstract":"<div><p>Bioaerosols are biologically originated particles in the atmosphere, which is mainly composed of bacteria, fungi, viruses, pollen, spores, and the fragmentation and disintegration of plants and animals. Bioaerosols are easy to be spread in the lower atmosphere and cause various epidemic diseases, which is harmful to human health. The forecasting and alert of bioaerosols have important scientific significance and reality needs. In this paper, a method is proposed for estimating and predicting the concentration profile of atmospheric bioaerosols using fluorescence lidar observational data. Using the powerful nonlinear prediction ability of artificial neural networks and through repeated training, a mathematical model can be established for the relationship among atmospheric environment, meteorological parameters, and bioaerosol concentration profiles. The input parameters are temperature and humidity, aerosol extinction coefficient, backscatter coefficient, PM2.5, PM10, SO<sub>2</sub>, NO<sub>2</sub>, CO, O<sub>3</sub>, and wind speed, and outputs the concentration profile of bioaerosols. The prediction results with the measurement relative deviation of genetic algorithm back propagation (GA-BP) neural network and adaptive genetic algorithm back propagation (AGA-BP) neural network were analyzed. The results indicate that the AGA-BP neural network can effectively predict the concentration distribution of bioaerosols, and the predicted concentrations of bioaerosols are 1793 particles × m<sup>−3</sup>, 3088 particles × m<sup>−3</sup>, 5261 particles × m<sup>−3</sup>, 7410 particles × m<sup>−3</sup> and 9133 particles × m<sup>−3</sup> for air quality with superior, fine, mild contamination, middle level pollution and heavy pollution at an altitude of 0.315 km, respectively. We found that the predicted concentration of pollution weather is much higher than that of good weather. Furthermore, the AGA-BP neural network was used to predict the concentration profiles of atmospheric bioaerosols under different weather conditions, which provided a new research method for forecasting and alert of atmospheric bioaerosols.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"22 ","pages":"Article 100248"},"PeriodicalIF":3.8000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000157/pdfft?md5=98856f4af1e8e012fd1d3048c250a1df&pid=1-s2.0-S2590162124000157-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162124000157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bioaerosols are biologically originated particles in the atmosphere, which is mainly composed of bacteria, fungi, viruses, pollen, spores, and the fragmentation and disintegration of plants and animals. Bioaerosols are easy to be spread in the lower atmosphere and cause various epidemic diseases, which is harmful to human health. The forecasting and alert of bioaerosols have important scientific significance and reality needs. In this paper, a method is proposed for estimating and predicting the concentration profile of atmospheric bioaerosols using fluorescence lidar observational data. Using the powerful nonlinear prediction ability of artificial neural networks and through repeated training, a mathematical model can be established for the relationship among atmospheric environment, meteorological parameters, and bioaerosol concentration profiles. The input parameters are temperature and humidity, aerosol extinction coefficient, backscatter coefficient, PM2.5, PM10, SO2, NO2, CO, O3, and wind speed, and outputs the concentration profile of bioaerosols. The prediction results with the measurement relative deviation of genetic algorithm back propagation (GA-BP) neural network and adaptive genetic algorithm back propagation (AGA-BP) neural network were analyzed. The results indicate that the AGA-BP neural network can effectively predict the concentration distribution of bioaerosols, and the predicted concentrations of bioaerosols are 1793 particles × m−3, 3088 particles × m−3, 5261 particles × m−3, 7410 particles × m−3 and 9133 particles × m−3 for air quality with superior, fine, mild contamination, middle level pollution and heavy pollution at an altitude of 0.315 km, respectively. We found that the predicted concentration of pollution weather is much higher than that of good weather. Furthermore, the AGA-BP neural network was used to predict the concentration profiles of atmospheric bioaerosols under different weather conditions, which provided a new research method for forecasting and alert of atmospheric bioaerosols.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应遗传算法反向传播神经网络、大气参数和荧光激光雷达的大气生物气溶胶浓度分布预测与预警
生物气溶胶是大气中来源于生物的颗粒物,主要由细菌、真菌、病毒、花粉、孢子以及动植物的碎屑和分解物组成。生物气溶胶容易在大气低层扩散,引发各种流行性疾病,危害人类健康。生物气溶胶的预报预警具有重要的科学意义和现实需求。本文提出了一种利用荧光激光雷达观测数据估算和预测大气生物气溶胶浓度分布的方法。利用人工神经网络强大的非线性预测能力,通过反复训练,建立大气环境、气象参数和生物气溶胶浓度剖面之间关系的数学模型。输入参数为温湿度、气溶胶消光系数、后向散射系数、PM2.5、PM10、SO2、NO2、CO、O3 和风速,输出为生物气溶胶浓度曲线。分析了遗传算法反向传播(GA-BP)神经网络和自适应遗传算法反向传播(AGA-BP)神经网络与测量相对偏差的预测结果。结果表明,AGA-BP 神经网络能有效预测生物气溶胶的浓度分布,在 0.315 km 的海拔高度上,空气质量为优、优良、轻度污染、中度污染和重度污染时,生物气溶胶的预测浓度分别为 1793 粒子 × m-3、3088 粒子 × m-3、5261 粒子 × m-3、7410 粒子 × m-3 和 9133 粒子 × m-3。我们发现,污染天气的预测浓度远高于良好天气的预测浓度。此外,利用 AGA-BP 神经网络预测了不同天气条件下大气生物气溶胶的浓度分布,为大气生物气溶胶的预报和预警提供了一种新的研究方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
期刊最新文献
Quantification of braking particles emission by PIV analysis — Application on railway Emission location affects impacts on atmosphere and climate from alternative fuels for Norwegian domestic aviation Variability of aerosol particle concentrations from tyre and brake wear emissions in an urban area Detection and analysis of ship emissions using single-particle mass spectrometry: A land-based field study in the port of rostock, Germany Comparison of global air pollution impacts across horizontal resolutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1