A real world assessment of European medium-duty vehicle emissions and fuel consumption

IF 3.8 Q2 ENVIRONMENTAL SCIENCES Atmospheric Environment: X Pub Date : 2025-01-01 DOI:10.1016/j.aeaoa.2024.100307
Nikiforos Zacharof , Stijn Broekaert , Theodoros Grigoratos , Evangelos Bitsanis , Georgios Fontaras
{"title":"A real world assessment of European medium-duty vehicle emissions and fuel consumption","authors":"Nikiforos Zacharof ,&nbsp;Stijn Broekaert ,&nbsp;Theodoros Grigoratos ,&nbsp;Evangelos Bitsanis ,&nbsp;Georgios Fontaras","doi":"10.1016/j.aeaoa.2024.100307","DOIUrl":null,"url":null,"abstract":"<div><div>Emissions of road vehicles have a significant impact on climate change and air quality and in order to address these problems there have been regulatory actions globally in the last decades. Such actions have focused mainly on light and heavy-duty vehicles, which comprise the highest share of the fleet and are responsible for the majority of emissions in the field. However, there are also medium-duty vehicles with a maximum permissible mass between 3.5 and 12 tonnes in the European categories, which have been mostly overlooked until recently. These vehicles could have a low market share, but they are important as they circulate mainly in urban and suburban areas under transient conditions and often with congestion. This has a detrimental impact on the environment and human health due to greenhouse gas and pollutant emissions. However, there are limited studies for this vehicle category. The current work undertook to address this issue by focusing on medium-duty vehicles in Europe by attempting to establish a methodology to calculate reference emission values for CO<sub>2</sub>, NO<sub>x</sub> and CO to improve fleet monitoring. For this reason, two state-of-the-art vehicles were measured on-road under the EU verification test procedure. Naturally, the measurements represented the anticipated average European conditions of the route in terms of speed profile, road grade and distance. In order to provide emissions values that are representative of the European conditions a normalization process was needed. For this reason, the measurements were used to set up vehicle simulations in VECTO, the official simulation tool of the European Commission for calculating type-approval fuel consumption and CO<sub>2</sub> emissions. In this way, the simulations provided values ranging from 297 g/km to 373 g/km. Using the ratio of fuel consumption for NO<sub>x</sub> and CO from the measurements, it was possible to derive reference pollutant values. For NO<sub>x</sub>, they were found to be between 0.0557 and 0.0963 g/km, while for CO the values were at 0.047 g/km. These values could be used as emissions factors as in the Guidebook, which is the official tool for monitoring fleet emissions of the European Commission. The Guidebook offers several approaches to calculate emissions, depending on data availability with the most sophisticated being a calculation method using vehicle speed, loading share and road grade. Taking this into consideration, the current work developed a similar methodology using the simulation time-series to derive regression coefficients that enable the calculation of CO<sub>2</sub>, NO<sub>x</sub> and CO emissions under different operating conditions. In this way, this methodology can be applied to representative vehicles of the medium and heavy-duty categories that have been through the verification test procedure to determine representative emission factors for these vehicles. This methodology could be used to improve fleet emissions monitoring, but also as a simple simulation tool for any further studies in the field.</div></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"25 ","pages":"Article 100307"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162124000741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Emissions of road vehicles have a significant impact on climate change and air quality and in order to address these problems there have been regulatory actions globally in the last decades. Such actions have focused mainly on light and heavy-duty vehicles, which comprise the highest share of the fleet and are responsible for the majority of emissions in the field. However, there are also medium-duty vehicles with a maximum permissible mass between 3.5 and 12 tonnes in the European categories, which have been mostly overlooked until recently. These vehicles could have a low market share, but they are important as they circulate mainly in urban and suburban areas under transient conditions and often with congestion. This has a detrimental impact on the environment and human health due to greenhouse gas and pollutant emissions. However, there are limited studies for this vehicle category. The current work undertook to address this issue by focusing on medium-duty vehicles in Europe by attempting to establish a methodology to calculate reference emission values for CO2, NOx and CO to improve fleet monitoring. For this reason, two state-of-the-art vehicles were measured on-road under the EU verification test procedure. Naturally, the measurements represented the anticipated average European conditions of the route in terms of speed profile, road grade and distance. In order to provide emissions values that are representative of the European conditions a normalization process was needed. For this reason, the measurements were used to set up vehicle simulations in VECTO, the official simulation tool of the European Commission for calculating type-approval fuel consumption and CO2 emissions. In this way, the simulations provided values ranging from 297 g/km to 373 g/km. Using the ratio of fuel consumption for NOx and CO from the measurements, it was possible to derive reference pollutant values. For NOx, they were found to be between 0.0557 and 0.0963 g/km, while for CO the values were at 0.047 g/km. These values could be used as emissions factors as in the Guidebook, which is the official tool for monitoring fleet emissions of the European Commission. The Guidebook offers several approaches to calculate emissions, depending on data availability with the most sophisticated being a calculation method using vehicle speed, loading share and road grade. Taking this into consideration, the current work developed a similar methodology using the simulation time-series to derive regression coefficients that enable the calculation of CO2, NOx and CO emissions under different operating conditions. In this way, this methodology can be applied to representative vehicles of the medium and heavy-duty categories that have been through the verification test procedure to determine representative emission factors for these vehicles. This methodology could be used to improve fleet emissions monitoring, but also as a simple simulation tool for any further studies in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
期刊最新文献
Multi-scenario modeling of regional dual-carbon target achievement and air quality improvement: A case study of Zhejiang province Investigating the effects of animal-specific δ15N-NH3 values volatilized from livestock waste on regional NH3 source partitioning A multiscale geographically weighted regression approach to emphasize the effects of traffic characteristics on vehicular emissions A real world assessment of European medium-duty vehicle emissions and fuel consumption Distribution of polycyclic aromatic compounds among various phases in an urban road microenvironment of a tropical megacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1