Nicholas Fantuzzi , Antoine Dib , Sajjad Babamohammadi , Silvio Campigli , David Benedetti , Jacopo Agnelli
{"title":"Mechanical analysis of a carbon fibre composite woven composite laminate for ultra-light applications in aeronautics","authors":"Nicholas Fantuzzi , Antoine Dib , Sajjad Babamohammadi , Silvio Campigli , David Benedetti , Jacopo Agnelli","doi":"10.1016/j.jcomc.2024.100447","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fiber composites have emerged as a transformative technology, offering a fascinating alternative to traditional materials like aluminum and steel. Their unique combination of high strength, stiffness, and reduced density makes them an ideal choice for lightweight structural components, an attribute that aligns with the pursuit of fuel-efficient and eco-friendly aircraft designs. With the continuous race between countries and research organizations to find new materials that satisfies the above-mentioned characteristics, this article highlights the utilization of a new Ultra-Light Carbon-based Composite (ULCC) in the aeronautical sector developed within the industrial research project TERSA (Radar technologies for autonomus flying vehicles or TEcnologie Radar per Sistemi aerei a pilotaggio remoto (SAPR) Autonomi in italian). The composite material has been developed with the aim of achieving superior performance and efficiency compared to existing products on the market. To evaluate its effectiveness, first, the mechanical properties of the ULCC have been compared to T300/Epoxy and T1000/Epoxy, two of the materials commonly used in aeronautical industry and unmanned aerial vehicle (UAV). Second, finite element models were employed to verify and analyze the dynamic properties of aeronautical structural components made of ULCC. The results indicate that the new carbon-based composite exhibits remarkable strength-to-weight ratio, enhanced durability, and offering significant advantages in terms of weight reduction and overall performance. These findings validate its potential as a viable alternative in aeronautical industry.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000185/pdfft?md5=e196d25badf8ae89dfc7014a4795f6bd&pid=1-s2.0-S2666682024000185-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber composites have emerged as a transformative technology, offering a fascinating alternative to traditional materials like aluminum and steel. Their unique combination of high strength, stiffness, and reduced density makes them an ideal choice for lightweight structural components, an attribute that aligns with the pursuit of fuel-efficient and eco-friendly aircraft designs. With the continuous race between countries and research organizations to find new materials that satisfies the above-mentioned characteristics, this article highlights the utilization of a new Ultra-Light Carbon-based Composite (ULCC) in the aeronautical sector developed within the industrial research project TERSA (Radar technologies for autonomus flying vehicles or TEcnologie Radar per Sistemi aerei a pilotaggio remoto (SAPR) Autonomi in italian). The composite material has been developed with the aim of achieving superior performance and efficiency compared to existing products on the market. To evaluate its effectiveness, first, the mechanical properties of the ULCC have been compared to T300/Epoxy and T1000/Epoxy, two of the materials commonly used in aeronautical industry and unmanned aerial vehicle (UAV). Second, finite element models were employed to verify and analyze the dynamic properties of aeronautical structural components made of ULCC. The results indicate that the new carbon-based composite exhibits remarkable strength-to-weight ratio, enhanced durability, and offering significant advantages in terms of weight reduction and overall performance. These findings validate its potential as a viable alternative in aeronautical industry.