{"title":"Surface decoration of low molecular weight polyethylenimine (LMW PEI) by phthalated dextrin for improved delivery of interleukin-12 plasmid","authors":"Valiollah Keshavarz, Maryam Kazemi, Bahman Khalvati, Fateme Zare, Ali Dehshahri, Hossein Sadeghpour","doi":"10.1002/btpr.3443","DOIUrl":null,"url":null,"abstract":"<p>In this investigation, low molecular weight polyethyleneimine (LMW PEI; 1.8 kDa branched PEI) was conjugated to phathalated dextrin. The aim of this chemical modification was to decorate PEI molecules with a hydrophilic layer to improve its biophysical properties while the phthalic moiety may improve the hydrophilic-hydrophobic balance of the final structure. The polymers were prepared at various conjugation degrees ranging from 6.5% to 16.5% and characterized in terms of biophysical characteristics as well as their gene transfer ability and cell-induced toxicity. The results showed that dextrin-phthalated-PEI (DPHPEI) polymer was able to form nanoparticles with the size range of around 118–170 nm, with the zeta potential of 6.2–9.5 mV. DPHPEI polymers could increase the level of desired protein expression in the cells by up to three folds compared with unmodified LMW PEI while the cell viability of the modified polymers was around 80%. The result of this study shows a promising approach to improve the transfection efficiency of LMW PEI while maintaining its low toxic effects.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3443","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this investigation, low molecular weight polyethyleneimine (LMW PEI; 1.8 kDa branched PEI) was conjugated to phathalated dextrin. The aim of this chemical modification was to decorate PEI molecules with a hydrophilic layer to improve its biophysical properties while the phthalic moiety may improve the hydrophilic-hydrophobic balance of the final structure. The polymers were prepared at various conjugation degrees ranging from 6.5% to 16.5% and characterized in terms of biophysical characteristics as well as their gene transfer ability and cell-induced toxicity. The results showed that dextrin-phthalated-PEI (DPHPEI) polymer was able to form nanoparticles with the size range of around 118–170 nm, with the zeta potential of 6.2–9.5 mV. DPHPEI polymers could increase the level of desired protein expression in the cells by up to three folds compared with unmodified LMW PEI while the cell viability of the modified polymers was around 80%. The result of this study shows a promising approach to improve the transfection efficiency of LMW PEI while maintaining its low toxic effects.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.